化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 362-370.DOI: 10.11949/0438-1157.20201498
候召宁1(),王林1(
),闫晓娜2,李修真1,王占伟1,梁坤峰1
收稿日期:
2020-10-28
修回日期:
2021-01-23
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
王林
作者简介:
候召宁(1994—),男,硕士研究生,基金资助:
HOU Zhaoning1(),WANG Lin1(
),YAN Xiaona2,LI Xiuzhen1,WANG Zhanwei1,LIANG Kunfeng1
Received:
2020-10-28
Revised:
2021-01-23
Online:
2021-06-20
Published:
2021-06-20
Contact:
WANG Lin
摘要:
超声对强化吸收制冷循环中发生器内溴化锂水溶液沸腾传热有重要意义,目前开展的相关研究较少,尤其多超声振子气泡动力学方面的理论尚未报道。为探究振子数量对溶液空化特性的影响,构建多振子气泡动力学模型,以纯水为例验证了模型准确性,探讨了不同影响因素对溶液空化特性的影响。模拟结果表明:总声强为1 W/cm2,振子数量由1增加至5时,空化气泡最大半径增加了44.12%,振子数量达到24~25个时,气泡最大半径增加率仅为1%;发生压力对空化效应的影响随着振子数量的增多而增大,单振子在吸收制冷系统的真空发生器更易产生稳态空化,而多振子更易在真空发生器内产生瞬态空化;多振子频率均匀度越小,空化强度越大,声强均匀度对空化强度的影响可忽略。
中图分类号:
候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370.
HOU Zhaoning, WANG Lin, YAN Xiaona, LI Xiuzhen, WANG Zhanwei, LIANG Kunfeng. Numerical simulation of bubble dynamics under multi-ultrasonic vibrators[J]. CIESC Journal, 2021, 72(S1): 362-370.
1 | Ibrahim N I, Al-Sulaiman F A, Ani F N. Solar absorption systems with integrated absorption energy storage - a review [J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1602-1610. |
2 | Legay M, Gondrexon N, Le Person S, et al. Enhancement of heat transfer by ultrasound: review and recent advances [J]. International Journal of Chemical Engineering, 2011, 2011: 1-17. |
3 | Delouei A A, Sajjadi H, Izadi M, et al. The simultaneous effects of nanoparticles and ultrasonic vibration on inlet turbulent flow: an experimental study [J]. Applied Thermal Engineering, 2019, 146: 268-277. |
4 | Chang T B, Wang Z L. Experimental investigation into effects of ultrasonic vibration on pool boiling heat transfer performance of horizontal low-finned U-tube in TiO2/R141b nanofluid [J]. Heat and Mass Transfer, 2016, 52(11): 2381-2390. |
5 | Chen R H, Chang T B. Heat transfer enhancement of pool boiling for a horizontal U-tube using TiO2-R141b nanofluid [J]. Journal of Mechanical Science and Technology, 2014, 28(12): 5197-5204. |
6 | Shen G Q, Ma L K, Zhang S X, et al. Effect of ultrasonic waves on heat transfer in Al2O3 nanofluid under natural convection and pool boiling [J]. International Journal of Heat and Mass Transfer, 2019, 138: 516-523. |
7 | Setareh M, Saffar-Avval M, Abdullah A. Experimental and numerical study on heat transfer enhancement using ultrasonic vibration in a double-pipe heat exchanger [J]. Applied Thermal Engineering, 2019, 159: 113867. |
8 | Zheng M J, Li B, Wan Z P, et al. Ultrasonic heat transfer enhancement on different structural tubes in LiBr solution [J]. Applied Thermal Engineering, 2016, 106: 625-633. |
9 | Song J T, Tian W, Xu X F, et al. Thermal performance of a novel ultrasonic evaporator based on machine learning algorithms [J]. Applied Thermal Engineering, 2019, 148: 438-446. |
10 | Tang J G, Sun L C, Wu D, et al. Effects of ultrasonic waves on subcooled pool boiling on a small plain heating surface [J]. Chemical Engineering Science, 2019, 201: 274-287. |
11 | Bonekamp S, Bier K. Influence of ultrasound on pool boiling heat transfer to mixtures of the refrigerants R23 and R134A [J]. International Journal of Refrigeration, 1997, 20(8): 606-615. |
12 | 张东伟, 李凯华, 周俊杰, 等. 超声波强化传热的链式反应机理与模拟研究 [J]. 工程热物理学报, 2017, 38(1): 145-148. |
Zhang D W, Li K H, Zhou J J, et al. Investigation on the chain reaction mechanism and simulation of heat transfer process enhanced by ultrasonic vibrations [J]. Journal of Engineering Thermophysics, 2017, 38(1): 145-148. | |
13 | Kim H Y, Kim Y G, Kang B H. Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration [J]. International Journal of Heat and Mass Transfer, 2004, 47(12/13): 2831-2840. |
14 | Yasui K. Effects of thermal conduction on bubble dynamics near the sonoluminescence threshold [J]. The Journal of the Acoustical Society of America, 1995, 98(5): 2772-2782. |
15 | Liu B, Cai J, Huai X L. Heat transfer with the growth and collapse of cavitation bubble between two parallel heated walls [J]. International Journal of Heat and Mass Transfer, 2014, 78: 830-838. |
16 | Kanthale P, Ashokkumar M, Grieser F. Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects [J]. Ultrasonics Sonochemistry, 2008, 15(2): 143-150. |
17 | Kanthale P M, Brotchie A, Ashokkumar M, et al. Experimental and theoretical investigations on sonoluminescence under dual frequency conditions [J]. Ultrasonics Sonochemistry, 2008, 15(4): 629-635. |
18 | Ye L Z, Zhu X J, Liu Y. Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution [J]. Ultrasonics Sonochemistry, 2019, 59: 104744. |
19 | Suo D J, Govind B, Zhang S Q, et al. Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound [J]. Ultrasonics Sonochemistry, 2018, 41: 419-426. |
20 | Wu H, Zhou C, Pu Z H, et al. Effect of low-frequency ultrasonic field at different power on the dynamics of a single bubble near a rigid wall [J]. Ultrasonics Sonochemistry, 2019, 58: 104704. |
21 | Moholkar V S. Mechanistic optimization of a dual frequency sonochemical reactor [J]. Chemical Engineering Science, 2009, 64(24): 5255-5267. |
22 | Zhang Y N, Zhang Y N, Li S C. The secondary Bjerknes force between two gas bubbles under dual-frequency acoustic excitation [J]. Ultrasonics Sonochemistry, 2016, 29: 129-145. |
23 | Ebrahiminia A, Mokhtari-Dizaji M, Toliyat T. Dual frequency cavitation event sensor with iodide dosimeter [J]. Ultrasonics Sonochemistry, 2016, 28: 276-282. |
24 | Yang X M, Church C C. A model for the dynamics of gas bubbles in soft tissue [J]. The Journal of the Acoustical Society of America, 2005, 118(6): 3595-3606. |
25 | Rayleigh O M F R S. Ⅷ. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200): 94-98. |
26 | Gogate P R, Tatake P A, Kanthale P M, et al. Mapping of sonochemical reactors: review, analysis, and experimental verification [J]. AIChE Journal, 2002, 48(7): 1542-1560. |
27 | Kaita Y. Thermodynamic properties of lithium bromide-water solutions at high temperatures [J]. International Journal of Refrigeration, 2001, 24(5): 374-390. |
28 | Malhotra A, Panda D M R. Thermodynamic properties of superheated and supercritical steam [J]. Applied Energy, 2001, 68(4): 387-393. |
29 | Suo D J, Guo S J, Lin W L, et al. Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an in vitro study [J]. Physics in Medicine and Biology, 2015, 60(18): 7403-7418. |
30 | 李争彩, 林书玉. 超声空化影响因素的数值模拟研究[J]. 陕西师范大学学报(自然科学版), 2008, 36(1): 38-42. |
Li Z C, Lin S Y. Numerical simulation of the factors influencing ultrasonic cavitation [J]. Journal of Shaanxi Normal University (Natural Science Edition), 2008, 36(1): 38-42. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[15] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 306
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 385
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||