化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 98-105.DOI: 10.11949/0438-1157.20201521
姜佳彤1(),胡斌1(
),王如竹1,刘华1,2,张治平2,李宏波2
收稿日期:
2020-10-29
修回日期:
2021-01-14
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
胡斌
作者简介:
姜佳彤(1996—),女,博士研究生,基金资助:
JIANG Jiatong1(),HU Bin1(
),WANG Ruzhu1,LIU Hua1,2,ZHANG Zhiping2,LI Hongbo2
Received:
2020-10-29
Revised:
2021-01-14
Online:
2021-06-20
Published:
2021-06-20
Contact:
HU Bin
摘要:
建立了一种R1233zd(E)卧式冷凝器的动态仿真模型,其相比于稳态模型在预测系统运行特性方面具有明显优势。详细介绍了建模所用控制方程、离散方法、运算逻辑等,模型可以计算出冷凝器在每一时间步长下,每一个控制体内制冷剂、管壁、冷却水的状态参数。由于模型涵盖了换热管的几何参数,因此改变几何参数可以模拟采用不同换热管结构对冷凝器性能的影响,比较了采用不同齿距的换热管对换热器内部相区分布、换热量、出水温度的影响。模拟结果得出,采用齿距为1.3 mm的低肋管时,出水温度较光管提升1.5℃以上,达到稳定输出的时间提前1 min以上,换热量提升2.3倍。R1233zd(E)作为新型环保工质,缺乏相关的热泵模型研究,因此搭建该冷凝器模型是完成R1233zd(E)高温热泵模型的重要基础。
中图分类号:
姜佳彤, 胡斌, 王如竹, 刘华, 张治平, 李宏波. R1233zd(E)高温热泵用卧式冷凝器的换热动态模拟[J]. 化工学报, 2021, 72(S1): 98-105.
JIANG Jiatong, HU Bin, WANG Ruzhu, LIU Hua, ZHANG Zhiping, LI Hongbo. Dynamic simulation of horizontal condenser of R1233zd(E) high temperature heat pump[J]. CIESC Journal, 2021, 72(S1): 98-105.
边界条件 | 状态 |
---|---|
冷却水流量 | 36 kg/s |
制冷剂流量 | 20 kg/s |
冷却水进口温度/压力 | 100℃/200 kPa |
制冷剂进口温度/压力 | 115℃/1284 kPa |
表1 边界条件参数
Table 1 Parameters of boundary conditions
边界条件 | 状态 |
---|---|
冷却水流量 | 36 kg/s |
制冷剂流量 | 20 kg/s |
冷却水进口温度/压力 | 100℃/200 kPa |
制冷剂进口温度/压力 | 115℃/1284 kPa |
结构 | 尺寸 |
---|---|
外径 | 19.05 mm |
管壁厚 | 1.245 mm |
齿高 | 1.422 mm |
齿厚 | 0.279 mm |
齿密度 | 0.75 fin/mm |
表2 换热管几何参数
Table 2 Geometric parameters of heat exchange tubes
结构 | 尺寸 |
---|---|
外径 | 19.05 mm |
管壁厚 | 1.245 mm |
齿高 | 1.422 mm |
齿厚 | 0.279 mm |
齿密度 | 0.75 fin/mm |
1 | 张迪, 杨刚, 刘冬鹏, 等. 新型低GWP高温热泵工质HFO-1234ze(Z)的研究进展[J]. 化工学报, 2020, 71(9): 3995-4005. |
Zhang D, Yang G, Liu D P, et al. Research progress of low GWP working fluid HFO-1234ze(Z) for high temperature heat pumps [J]. CIESC Journal, 2020, 71(9): 3995-4005. | |
2 | 史琳, 安青松. 基加利修正案生效后替代制冷剂的选择与对策思考[J]. 制冷与空调, 2019, 19(9): 50-58. |
Shi L, An Q S. Low GWP refrigerants options and countermeasures discussion after the entry into force of Kigali Amendment [J]. Refrigeration and Air-Conditioning, 2019, 19(9): 50-58. | |
3 | Arpagaus C, Bless F, Uhlmann M, et al. High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials [J]. Energy, 2018, 152: 985-1010. |
4 | Eyerer S, Dawo F B, Kaindl J, et al. Experimental investigation of modern ORC working fluids R1224yd(Z) and R1233zd(E) as replacements for R245fa [J]. Applied Energy, 2019, 240: 946-963. |
5 | Welzl M, Heberle F, Brüggemann D. Experimental evaluation of nucleate pool boiling heat transfer correlations for R245fa and R1233zd(E) in ORC applications [J]. Renewable Energy, 2020, 147: 2855-2864. |
6 | Yang J Y, Sun Z Y, Yu B B, et al. Experimental comparison and optimization guidance of R1233zd(E) as a drop-in replacement to R245fa for organic Rankine cycle application [J]. Applied Thermal Engineering, 2018, 141: 10-19. |
7 | Kondou C, Koyama S. Thermodynamic assessment of high-temperature heat pumps using low-GWP HFO refrigerants for heat recovery [J]. International Journal of Refrigeration, 2015, 53: 126-141. |
8 | Frate G F, Ferrari L, Desideri U. Analysis of suitability ranges of high temperature heat pump working fluids [J]. Applied Thermal Engineering, 2019, 150: 628-640. |
9 | Mikielewicz D, Wajs J. Performance of the very high-temperature heat pump with low GWP working fluids [J]. Energy, 2019, 182: 460-470. |
10 | Alhamid M I, Aisyah N, Nasruddin N, et al. Thermodynamic and environmental analysis of a high-temperature heat pump using HCFO-1224yd(Z) and HCFO-1233zd(E) [J]. International Journal of Technology, 2019, 10(8): 1585. |
11 | Mateu-Royo C, Navarro-Esbrí J, Mota-Babiloni A, et al. Theoretical performance evaluation of ejector and economizer with parallel compression configurations in high temperature heat pumps [J]. International Journal of Refrigeration, 2020, 119: 356-365. |
12 | Alam M J, Islam M A, Kariya K, et al. Measurement of thermal conductivity and correlations at saturated state of refrigerant trans-1‑chloro‑3,3,3-trifluoropropene (R-1233zd(E)) [J]. International Journal of Refrigeration, 2018, 90: 174-180. |
13 | Miyara A, Alam M J, Kariya K. Measurement of viscosity of trans-1‑chloro‑3,3,3-trifluoropropene (R-1233zd(E)) by tandem capillary tubes method [J]. International Journal of Refrigeration, 2018, 92: 86-93. |
14 | Zhang J, Kærn M R, Ommen T, et al. Condensation heat transfer and pressure drop characteristics of R134a, R1234ze(E), R245fa and R1233zd(E) in a plate heat exchanger [J]. International Journal of Heat and Mass Transfer, 2019, 128: 136-149. |
15 | Yin J G, Ke J J, Zhao G J, et al. Experimental vapor pressures and gaseous pvT properties of trans-1-chloro-3,3,3-trifluoropropene (R1233zd(E)) [J]. International Journal of Refrigeration, 2021, 121: 253-257. |
16 | 武永强, 陈泰连. R1233zd(E)和R123的水平管外冷凝换热性能研究[J]. 制冷与空调, 2019, 19(4): 35-38, 55. |
Wu Y Q, Chen T L. Study on condensation heat transfer performance outside horizontal tubes for R1233zd (E) and R123 [J]. Refrigeration and Air-Conditioning, 2019, 19(4): 35-38, 55. | |
17 | 程启康, 耿飞. R1233zd(E)与R123的管内外换热性能的对比研究[J]. 制冷与空调, 2016, 16(7): 44-48. |
Cheng Q K, Geng F. Comparative study on heat transfer performance of refrigerant side and water side for R1233zd(E) and R123 [J]. Refrigeration and Air-Conditioning, 2016, 16(7): 44-48. | |
18 | Lillo G, Mastrullo R, Mauro A W, et al. Flow boiling of R1233zd(E) in a horizontal tube: experiments, assessment and correlation for asymmetric annular flow [J]. International Journal of Heat and Mass Transfer, 2019, 129: 547-561. |
19 | 王春力. 卧式冷凝器CAD系统设计及性能分析研究[D]. 大连: 大连理工大学, 2007. |
Wang C L. Study on the CAD system design and capability analysis for horizontal condenser [D]. Dalian: Dalian University of Technology, 2007. | |
20 | 王烨, 孙振东, 王瑞君, 等. 不同边界条件下管翅式换热器流动与传热性能的POD分析[J]. 化工学报, 2020, 71(11): 5150-5158. |
Wang Y, Sun Z D, Wang R J, et al. POD analysis of flow and heat transfer performance of tube fin heat exchanger on different boundary conditions [J]. CIESC Journal, 2020, 71(11): 5150-5158. | |
21 | Zhang Y W, Faghri A, Shafii M B. Capillary blocking in forced convective condensation in horizontal miniature channels [J]. Journal of Heat Transfer, 2001, 123(3): 501-511. |
22 | Aghanajafi C, Hesampour K. Heat transfer analysis of a condensate flow by VOF method [J]. Journal of Fusion Energy, 2006, 25(3/4): 219-223. |
23 | 吴洋宽. 卧式管壳式冷凝器的改进设计研究[D]. 南京: 南京航空航天大学, 2018. |
Wu Y K. Improved design of horizontal tube and shell condenser [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. | |
24 | MacArthur J W, Grald E W. Unsteady compressible two-phase flow model for predicting cyclic heat pump performance and a comparison with experimental data [J]. International Journal of Refrigeration, 1989, 12(1): 29-41. |
25 | Jia X, Tso C P, Chia P K, et al. A distributed model for prediction of the transient response of an evaporator [J]. International Journal of Refrigeration, 1995, 18(5): 336-342. |
26 | Koury R N N, Machado L, Ismail K A R. Numerical simulation of a variable speed refrigeration system [J]. International Journal of Refrigeration, 2001, 24(2): 192-200. |
27 | Ndiaye D, Bernier M. Transient modeling of refrigerant-to-airfin-and-tube heat exchangers [J]. HVAC&R Research, 2010, 16(3): 355-381. |
28 | Eissenberg D M, Noritake H M. Computer model and correlations for prediction of horizontal-tube condenser performance in sea water distillation plants[R]. Oak Ridge National Laboratory, 1970. |
29 | 马志先. HFC245fa水平管束外冷凝换热及其强化的试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. |
Ma Z X. Experimental investigation on condensation heat transfer and its enhancement of HFC245fa outside horizontal tube bundles [D]. Harbin: Harbin Institute of Technology, 2007. | |
30 | 谷波, 魏跃文, 韩荣梅. 低螺纹管的冷凝换热分析[J]. 制冷学报, 2001, 22(4): 6-10. |
Gu B, Wei Y W, Han R M. Analysis on the heat transfer model for thread tube [J]. Refrigeration Journal, 2001, 22(4): 6-10. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[7] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[8] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[9] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[10] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[11] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[12] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 697
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 650
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||