化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6030-6048.DOI: 10.11949/0438-1157.20210855
洪宗平1,2,4(),叶楚梅1,2,吴洪1,2(),张鹏1,2,4,段翠佳4,袁标4,严硕4,陈赞4(),姜忠义1,2,3()
收稿日期:
2021-06-25
修回日期:
2021-08-13
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
吴洪,陈赞,姜忠义
作者简介:
洪宗平(1989—),男,硕士研究生,基金资助:
Zongping HONG1,2,4(),Chumei YE1,2,Hong WU1,2(),Peng ZHANG1,2,4,Cuijia DUAN4,Biao YUAN4,Shuo YAN4,Zan CHEN4(),Zhongyi JIANG1,2,3()
Received:
2021-06-25
Revised:
2021-08-13
Online:
2021-12-05
Published:
2021-12-22
Contact:
Hong WU,Zan CHEN,Zhongyi JIANG
摘要:
天然气是一种高燃烧热值的清洁能源,但开采出来的天然气中含有一定量的酸性气体CO2,会造成热值降低、管道腐蚀等问题,因此在管道运输和使用前需对其进行脱碳处理。分别对低温精馏、溶剂吸收、吸附和膜分离四种脱碳技术进行了介绍,详析了每一种技术的工艺特点和典型工业应用情况,并从原料气进料条件、脱碳效率、能耗及成本等方面进行了分析比较,为不同实际工况脱碳工艺的选择提供指导,具有重要的工程意义。膜分离技术在装置占地面积、能耗及成本等方面具有一定优势,可灵活调变的级数工艺也使其能够实现高CO2脱除率和低烃损失,具有良好的发展和应用前景,特别是适用于空间受限的场合,如在海上平台进行天然气脱碳处理。
中图分类号:
洪宗平, 叶楚梅, 吴洪, 张鹏, 段翠佳, 袁标, 严硕, 陈赞, 姜忠义. 天然气脱碳技术研究进展[J]. 化工学报, 2021, 72(12): 6030-6048.
Zongping HONG, Chumei YE, Hong WU, Peng ZHANG, Cuijia DUAN, Biao YUAN, Shuo YAN, Zan CHEN, Zhongyi JIANG. Research progress in CO2 removal technology of natural gas[J]. CIESC Journal, 2021, 72(12): 6030-6048.
1 | British Petroleum p.l.c. Statistical Review of World Energy 2020[EB/OL]. . |
2 | British Petroleum p.l.c. Energy Outlook: 2020 edition[EB/OL]. . |
3 | British Petroleum p.l.c.«bp世界能源展望»2020年版:快速转型,净零和一切如常情景的洞察——中国[EB/OL]. . |
British Petroleum p.l.c.The2020edition of bp's World Energy Outlook: the perspectives of rapid, net zero and business-as-usual —— China[EB/OL]. . | |
4 | Wang S F, Li X Q, Wu H, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890. |
5 | Maqsood K, Mullick A, Ali A, et al. Cryogenic carbon dioxide separation from natural gas: a review based on conventional and novel emerging technologies[J]. Reviews in Chemical Engineering, 2014, 30(5): 453-477. |
6 | Maqsood K, Pal J, Turunawarasu D, et al. Performance enhancement and energy reduction using hybrid cryogenic distillation networks for purification of natural gas with high CO2 content[J]. Korean Journal of Chemical Engineering, 2014, 31(7): 1120-1135. |
7 | 夏明珠, 严莲荷, 雷武, 等. 二氧化碳的分离回收技术与综合利用[J]. 现代化工, 1999, 19(5):46-48. |
Xia M Z, Yan L H, Lei W, et al. The separation technology and comprehensive utilization for CO2[J]. Modern Chemical Industry, 1999, 19(5): 46-48. | |
8 | Hart A, Gnanendran N. Cryogenic CO2 capture in natural gas[J]. Energy Procedia, 2009, 1(1): 697-706. |
9 | Song C F, Liu Q L, Deng S, et al. Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 265-278. |
10 | Pellegrini L A. Process for the removal of CO from acid gas: US9945605[P]. 2018-04-17. |
11 | Langè S, Pellegrini L A, Vergani P, et al. Energy and economic analysis of a new low-temperature distillation process for the upgrading of high-CO2 content natural gas streams[J]. Industrial & Engineering Chemistry Research, 2015, 54(40): 9770-9782. |
12 | Maqsood K, Ali A, Shariff A B M, et al. Process intensification using mixed sequential and integrated hybrid cryogenic distillation network for purification of high CO2 natural gas[J]. Chemical Engineering Research and Design, 2017, 117: 414-438. |
13 | Yeo Z Y, Chew T L, Zhu P W, et al. Conventional processes and membrane technology for carbon dioxide removal from natural gas: a review[J]. Journal of Natural Gas Chemistry, 2012, 21(3): 282-298. |
14 | 刘宝林. 低温变压吸附脱除天然气中二氧化碳实验研究[D]. 大连: 大连理工大学, 2015. |
Liu B L. Experimental study of low-temperature and pressure swing adsorption removal carbon dioxide gas from natural gas[D]. Dalian: Dalian University of Technology, 2015. | |
15 | Rufford T E, Smart S, Watson G C Y, et al. The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies[J]. Journal of Petroleum Science and Engineering, 2012, 94/95: 123-154. |
16 | Araújo O D Q F, Reis A D C, de Medeiros J L, et al. Comparative analysis of separation technologies for processing carbon dioxide rich natural gas in ultra-deepwater oil fields[J]. Journal of Cleaner Production, 2017, 155: 12-22. |
17 | Brunetti A, Scura F, Barbieri G, et al. Membrane technologies for CO2 separation[J]. Journal of Membrane Science, 2010, 359(1/2): 115-125. |
18 | 胡伟. 天然气脱酸工艺[J]. 辽宁化工, 2017, 46(9): 915-916, 919. |
Hu W. Discussion on natural gas deacidification processes[J]. Liaoning Chemical Industry, 2017, 46(9): 915-916, 919. | |
19 | Speight J G. Process classification[M]//Natural Gas. Amsterdam: Elsevier, 2007: 131-160. |
20 | Kohl A L, Nielsen R B. Physical solvents for acid gas removal[M]//Gas Purification. Amsterdam: Elsevier, 1997: 1187-1237. |
21 | 陈赓良, 李劲. 天然气脱硫脱碳工艺的选择[J]. 天然气与石油, 2014, 32(6): 29-34, 9. |
Chen G L, Li J. Selection of gas desulfurization and decarburization process[J]. Natural Gas and Oil, 2014, 32(6): 29-34, 9. | |
22 | Tan L S, Shariff A M, Lau K K, et al. Factors affecting CO2 absorption efficiency in packed column: a review[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 1874-1883. |
23 | Sreedhar I, Nahar T, Venugopal A, et al. Carbon capture by absorption -path covered and ahead[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 1080-1107. |
24 | Tan L S, Shariff A M, Lau K K, et al. Impact of high pressure on high concentration carbon dioxide capture from natural gas by monoethanolamine/N-methyl-2-pyrrolidone solvent in absorption packed column[J]. International Journal of Greenhouse Gas Control, 2015, 34: 25-30. |
25 | Shannon M S, Tedstone J M, Danielsen S P O, et al. Evaluation of alkylimidazoles as physical solvents for CO2/CH4 separation[J]. Industrial & Engineering Chemistry Research, 2012, 51(1): 515-522. |
26 | 姜宁, 李春福, 王远江, 等. 天然气脱二氧化碳工艺方法综述[J]. 化学工程与装备, 2011(7): 147-150. |
Jiang N, Li C F, Wang Y J, et al. Review of removal processes for carbon dioxide from natural gas[J]. Chemical Engineering & Equipment, 2011(7): 147-150. | |
27 | 张磊, 蒋洪. 高含CO2天然气脱碳工艺中MDEA活化剂优选[J]. 石油与天然气化工, 2017, 46(4): 22-29. |
Zhang L, Jiang H. MDEA activator optimization for decarbonization process of high CO2-containing natural gas[J]. Chemical Engineering of Oil & Gas, 2017, 46(4): 22-29. | |
28 | 彭修军, 黄帆, 谢文静, 等. 活化MDEA脱碳溶剂CT8-23在天然气提氦厂的应用[J]. 石油与天然气化工, 2016, 45(4): 26-30. |
Peng X J, Huang F, Xie W J, et al. Application of activated MDEA decarbonization solvent CT8-23 in the plant of enriching helium from natural gas[J]. Chemical Engineering of Oil & Gas, 2016, 45(4): 26-30. | |
29 | 杨仁杰, 陈小榆, 蒋洪. 活化MDEA与混合胺适应性研究[J]. 石油与天然气化工, 2018, 47(3): 21-25, 30. |
Yang R J, Chen X Y, Jiang H. Study on the adaptability of activated MDEA and mixed amines[J]. Chemical Engineering of Oil & Gas, 2018, 47(3): 21-25, 30. | |
30 | 张祥坤. 活化MDEA溶液用于天然气脱碳性能的研究[D]. 青岛: 中国海洋大学, 2015. |
Zhang X K. The study on carbon dioxide absorption from natural gas in activated N-methyldiethanolamine solution[D]. Qingdao: Ocean University of China, 2015. | |
31 | Shell Catalysts & Technologies. Switching to ADIP-X or Sulfinol-X[EB/OL]. . |
32 | 曾树兵. 混合胺脱碳工艺在珠海天然气液化项目中的应用研究[D]. 东营: 中国石油大学(华东), 2014. |
Zeng S B. Applied research of mixed amine decarburization process in liquefied natural gas project in Zhuhai[D]. Dongying: China University of Petroleum, 2014. | |
33 | 周声结, 贺莹. 国内大规模MDEA脱碳技术在中海油成功应用: 以中海油东方天然气处理厂为例[J]. 天然气工业, 2012, 32(8): 35-38, 128. |
Zhou S J, He Y. Application of MDEA decarbonizing technology in CNOOC offshore gas fields: a case history of the CNOOC Dongfang Natural Gas Processing Plant[J]. Natural Gas Industry, 2012, 32(8): 35-38, 128. | |
34 | 李世广. 松南气田2种脱碳技术的应用总结[J]. 化学工业与工程技术, 2013, 34(3): 14-16. |
Li S G. Application summary of two natural gas treating technologies in Songnan gasfield[J]. Journal of Chemical Industry & Engineering, 2013, 34(3): 14-16. | |
35 | Kittel J, Fleury E, Vuillemin B, et al. Corrosion in alkanolamine used for acid gas removal: from natural gas processing to CO2 capture[J]. Materials and Corrosion, 2012, 63(3): 223-230. |
36 | 陈颖, 张雪楠, 梁宏宝, 等. 富含CO2天然气净化技术现状及研究方向[J]. 石油学报(石油加工), 2015, 31(1): 194-202. |
Chen Y, Zhang X N, Liang H B, et al. Present situation and research directions of purification technology used in natural gas containing rich CO2[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(1): 194-202. | |
37 | 朱利凯, 陈怀龙. 天然气脱碳装置产能核定实例介绍[J]. 石油与天然气化工, 2013, 42(4): 331-335. |
Zhu L K, Chen H L. An example for examination of working capacity on the plant of bulk CO2 removal from natural gas[J]. Chemical Engineering of Oil & Gas, 2013, 42(4): 331-335. | |
38 | 万宇飞, 邓骁伟, 程涛, 等. 不同含碳量天然气脱碳方案选择[J]. 油气田环境保护, 2013, 23(3): 56-58, 75. |
Wan Y F, Deng X W, Cheng T, et al. Decarbonization scheme selection for natural gas with different carbon content[J]. Environmental Protection of Oil & Gas Fields, 2013, 23(3): 56-58, 75. | |
39 | 张中正. 二氧化碳的吸附分离[D]. 天津: 天津大学, 2012. |
Zhang Z Z. Adsorptive separation of carbon dioxide[D]. Tianjin: Tianjin University, 2012. | |
40 | 黄星, 曹文胜. 变压吸附PSA净化天然气技术[J]. 低温与特气, 2014, 32(3): 6-9. |
Huang X, Cao W S. Purification technology of natural gas by pressure swing adsorption[J]. Low Temperature and Specialty Gases, 2014, 32(3): 6-9. | |
41 | Esteves I A A C, Lopes M S S, Nunes P M C, et al. Adsorption of natural gas and biogas components on activated carbon[J]. Separation and Purification Technology, 2008, 62(2): 281-296. |
42 | Rocha L A M, Andreassen K A, Grande C A. Separation of CO2/CH4 using carbon molecular sieve (CMS) at low and high pressure[J]. Chemical Engineering Science, 2017, 164: 148-157. |
43 | 孔祥明, 杨颖, 沈文龙, 等. CO2/CH4/N2在沸石13X-APG上的吸附平衡[J]. 化工学报, 2013, 64(6): 2117-2124. |
Kong X M, Yang Y, Shen W L, et al. Adsorption equilibrium of CO2, CH4 and N2 on zeolite 13X-APG[J]. CIESC Journal, 2013, 64(6): 2117-2124. | |
44 | Saha D, Bao Z B, Jia F, et al. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A[J]. Environmental Science & Technology, 2010, 44(5): 1820-1826. |
45 | Tamnanloo J, Fatemi S, Golmakani A. Binary equilibrium adsorption data and comparison of zeolites with activated carbon for selective adsorption of CO2 from CH4[J]. Adsorption Science & Technology, 2014, 32(9): 707-716. |
46 | Xu X L, Zhao X X, Sun L B, et al. Adsorption separation of carbon dioxide, methane, and nitrogen on Hβ and Na-exchanged β-zeolite[J]. Journal of Natural Gas Chemistry, 2008, 17(4): 391-396. |
47 | Belmabkhout Y, Sayari A. Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure(Ⅱ): Adsorption of CO2/N2, CO2/CH4 and CO2/H2 binary mixtures[J]. Chemical Engineering Science, 2009, 64(17): 3729-3735. |
48 | Belmabkhout Y, de Weireld G, Sayari A. Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas[J]. Langmuir, 2009, 25(23): 13275-13278. |
49 | Liu X W, Li J W, Zhou L, et al. Adsorption of CO2, CH4 and N2 on ordered mesoporous silica molecular sieve[J]. Chemical Physics Letters, 2005, 415(4/5/6): 198-201. |
50 | Bao Z B, Yu L, Ren Q L, et al. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework[J]. Journal of Colloid and Interface Science, 2011, 353(2): 549-556. |
51 | Jiang J J, Lu Z Y, Zhang M X, et al. Higher symmetry multinuclear clusters of metal–organic frameworks for highly selective CO2 capture[J]. Journal of the American Chemical Society, 2018, 140(51): 17825-17829. |
52 | Bhunia A, Boldog I, Möller A, et al. Highly stable nanoporous covalent triazine-based frameworks with an adamantane core for carbon dioxide sorption and separation[J]. Journal of Materials Chemistry A, 2013, 1(47): 14990. |
53 | Zeng Y F, Zou R Q, Zhao Y L. Covalent organic frameworks for CO2 capture[J]. Advanced Materials, 2016, 28(15): 2855-2873. |
54 | Wang Q, Luo J Z, Zhong Z Y, et al. CO2 capture by solid adsorbents and their applications: current status and new trends[J]. Energy Environ. Sci., 2011, 4(1): 42-55. |
55 | 王胜平, 沈辉, 范莎莎, 等. 固体二氧化碳吸附剂研究进展[J]. 化学工业与工程, 2014, 31(1): 72-78. |
Wang S P, Shen H, Fan S S, et al. Research progress of solid adsorbents for CO2 capture[J]. Chemical Industry and Engineering, 2014, 31(1): 72-78. | |
56 | Pardakhti M, Jafari T, Tobin Z, et al. Trends in solid adsorbent materials development for CO2 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34533-34559. |
57 | 王春燕, 杨莉娜, 王念榕, 等. 变压吸附技术在天然气脱除CO2上的应用探讨[J]. 石油规划设计, 2013, 24(1): 52-55. |
Wang C Y, Yang L N, Wang N R, et al. Investigation of PSA technology applying to CO2 removal from natural gas[J]. Petroleum Planning & Engineering, 2013, 24(1): 52-55. | |
58 | 任德庆, 高洪波, 纪文明. 变压吸附脱碳技术在高含二氧化碳天然气开发应用[J]. 中国石油和化工标准与质量, 2012, 33(16): 146-147. |
Ren D Q, Gao H B, Ji W M. Development and application of PSA decarbonization technology on natural gas containing full CO2 [J]. China Petroleum and Chemical Standard and Quality, 2012, 33(16): 146-147. | |
59 | Tagliabue M, Farrusseng D, Valencia S, et al. Natural gas treating by selective adsorption: material science and chemical engineering interplay[J]. Chemical Engineering Journal, 2009, 155(3): 553-566. |
60 | 李浩然. 脉动流变压吸附分离CH4/CO2实验与模拟研究[D]. 大连: 大连理工大学, 2019. |
Li H R. Study on the pulsating rheological pressure swing adsorption separation of CH4/CO2 by experiments and simulation[D]. Dalian: Dalian University of Technology, 2019. | |
61 | 陈淑花, 李浩然, 刘学武, 等. 一种脉动射流变压吸附净化气体的装置: 109647131A[P]. 2019-04-19. |
Chen S H, Li H R, Liu X W, et al. Device for purifying gas through pulsating jet pressure swing adsorption: 109647131A[P]. 2019-04-19. | |
62 | Wijmans J G, Baker R W. The solution-diffusion model: a review[J]. Journal of Membrane Science, 1995, 107(1/2): 1-21. |
63 | Monsalve-Bravo G, Bhatia S. Modeling permeation through mixed-matrix membranes: a review[J]. Processes, 2018, 6(9): 172. |
64 | Baker R W, Lokhandwala K. Natural gas processing with membranes: an overview[J]. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109-2121. |
65 | Baker R W, Low B T. Gas separation membrane materials: a perspective[J]. Macromolecules, 2014, 47(20): 6999-7013. |
66 | Vu D Q, Koros W J, Miller S J. High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes[J]. Industrial & Engineering Chemistry Research, 2002, 41(3): 367-380. |
67 | Budd P, Elabas E, Ghanem B, et al. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity[J]. Advanced Materials, 2004, 16(5): 456-459. |
68 | Budd P M, Msayib K J, Tattershall C E, et al. Gas separation membranes from polymers of intrinsic microporosity[J]. Journal of Membrane Science, 2005, 251(1/2): 263-269. |
69 | Gao Z, Wang Y N, Wu H, et al. Surface functionalization of polymers of intrinsic microporosity (PIMs) membrane by polyphenol for efficient CO2 separation[J]. Green Chemical Engineering, 2021, 2(1): 70-76. |
70 | Bezzu C G, Carta M, Tonkins A, et al. A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation[J]. Advanced Materials, 2012, 24(44): 5930-5933. |
71 | Carta M, Croad M, Malpass-Evans R, et al. Triptycene induced enhancement of membrane gas selectivity for microporous tröger's base polymers[J]. Advanced Materials, 2014, 26(21): 3526-3531. |
72 | Rose I, Bezzu C G, Carta M, et al. Polymer ultrapermeability from the inefficient packing of 2D chains[J]. Nature Materials, 2017, 16(9): 932-937. |
73 | Ghanem B S, Swaidan R, Ma X H, et al. Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves[J]. Advanced Materials, 2014, 26(39): 6696-6700. |
74 | Ghanem B S, Swaidan R, Litwiller E, et al. Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation[J]. Advanced Materials, 2014, 26(22): 3688-3692. |
75 | Rogan Y, Malpass-Evans R, Carta M, et al. A highly permeable polyimide with enhanced selectivity for membrane gas separations[J]. Journal of Materials Chemistry A, 2014, 2(14): 4874-4877. |
76 | Ma X H, Abdulhamid M, Miao X H, et al. Facile synthesis of a hydroxyl-functionalized tröger's base diamine: a new building block for high-performance polyimide gas separation membranes[J]. Macromolecules, 2017, 50(24): 9569-9576. |
77 | Shamsabadi A A, Seidi F, Nozari M, et al. A new pentiptycene-based dianhydride and its high-free-volume polymer for carbon dioxide removal[J]. ChemSusChem, 2018, 11(2): 472-482. |
78 | Wang Z G, Wang D, Zhang F, et al. Tröger's base-based microporous polyimide membranes for high-performance gas separation[J]. ACS Macro Letters, 2014, 3(7): 597-601. |
79 | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
80 | Wang Y, Ma X, Ghanem B S, et al. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations[J]. Materials Today Nano, 2018, 3: 69-95. |
81 | Park H B, Jung C H, Lee Y M, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions[J]. Science, 2007, 318(5848): 254-258. |
82 | Aguilar-Lugo C, Álvarez C, Lee Y M, et al. Thermally rearranged polybenzoxazoles containing bulky adamantyl groups from ortho-substituted precursor copolyimides[J]. Macromolecules, 2018, 51(5): 1605-1619. |
83 | Park C H, Tocci E, Lee Y M, et al. Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO)[J]. The Journal of Physical Chemistry B, 2012, 116(42): 12864-12877. |
84 | Shamsipur H, Dawood B A, Budd P M, et al. Thermally rearrangeable PIM-polyimides for gas separation membranes[J]. Macromolecules, 2014, 47(16): 5595-5606. |
85 | Kim S, Han S H, Lee Y M. Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture[J]. Journal of Membrane Science, 2012, 403/404: 169-178. |
86 | Woo K T, Lee J, Dong G X, et al. Fabrication of thermally rearranged (TR) polybenzoxazole hollow fiber membranes with superior CO2/N2 separation performance[J]. Journal of Membrane Science, 2015, 490: 129-138. |
87 | Ma C H, Koros W J. High-performance ester-crosslinked hollow fiber membranes for natural gas separations[J]. Journal of Membrane Science, 2013, 428: 251-259. |
88 | An H, Lee A S, Kammakakam I, et al. Bromination/debromination-induced thermal crosslinking of 6FDA-Durene for aggressive gas separations[J]. Journal of Membrane Science, 2018, 545: 358-366. |
89 | Li X Q, Cheng Y D, Zhang H Y, et al. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes[J]. ACS Applied Materials & Interfaces, 2015, 7(9): 5528-5537. |
90 | Xin Q P, Ouyang J, Liu T, et al. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal–organic frameworks[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1065-1077. |
91 | Wu X Y, Tian Z Z, Wang S F, et al. Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation[J]. Journal of Membrane Science, 2017, 528: 273-283. |
92 | 张鹏, 陈赞, 吴洪, 等. 石墨烯基CO2分离膜通道微环境调控研究进展[J]. 化工学报, 2020, 71(1): 54-67. |
Zhang P, Chen Z, Wu H, et al. Progress in research on channel microenvironment regulation of graphenebased CO2 separation membrane[J]. CIESC Journal, 2020, 71(1): 54-67. | |
93 | 张永军, 苑慧敏, 万书宝, 等. 天然气中二氧化碳脱除技术[J]. 化工中间体, 2008(9): 1-3. |
Zhang Y J, Yuan H M, Wan S B, et al. Technology of CO2 separated from natural gas[J]. Chemical Intermediates, 2008(9): 1-3. | |
94 | 孙洁, 徐正斌. 松南气田天然气脱碳工艺技术研究[J]. 石油天然气学报, 2010, 32(4): 325-327, 434. |
Sun J, Xu Z B. Research on natural gas decarbonization technologies in Songnan gas field[J]. Journal of Oil and Gas Technology, 2010, 32(4): 325-327, 434. | |
95 | 孟兆伟, 刘宇, 任少科. CO2分离膜在海上平台的使用[J]. 低温与特气, 2015, 33(5): 41-44, 49. |
Meng Z W, Liu Y, Ren S K. The use of CO2 separation membrane in the offshore platform[J]. Low Temperature and Specialty Gases, 2015, 33(5): 41-44, 49. | |
96 | 水思源. 巴西国油采用霍尼韦尔UOP技术处理海上天然气[J]. 石油与装备, 2013(1): 23. |
Shui S Y. Petrobras using Honeywell UOP technology to process offshore gas[J]. Petroleun & Equipment, 2013(1): 23-23. | |
97 | Honeywell-UOP. UOP SeparexTM Membrane Technology[EB/OL]. . |
98 | Song C F, Liu Q L, Ji N, et al. Alternative pathways for efficient CO2 capture by hybrid processes—a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 215-231. |
99 | 胡苏阳, 花亦怀, 李秋英, 等. 天然气膜分离脱碳技术评述[J]. 石化技术, 2021, 28(5): 54-55, 57. |
Hu S Y, Hua Y H, Li Q Y, et al. Review on membrane separation and decarbonization technology of natural gas[J]. Petrochemical Industry Technology, 2021, 28(5): 54-55, 57. | |
100 | 龙小军. TBAB和TEAB存在下水合物法生物气脱碳技术研究[D]. 广州: 华南理工大学, 2017. |
Long X J. Study on hydrate based biogas decarburization technology in the presence of TBAB and TEAB[D]. Guangzhou: South China University of Technology, 2017. | |
101 | Xu C G, Yu Y S, Ding Y L, et al. The effect of hydrate promoters on gas uptake[J]. Physical Chemistry Chemical Physics, 2017, 19(32): 21769-21776. |
102 | Zhang X X, Liu H, Sun C Y, et al. Effect of water content on separation of CO2/CH4 with active carbon by adsorption-hydration hybrid method[J]. Separation and Purification Technology, 2014, 130: 132-140. |
103 | Xu C G, Li X S, Yan K F, et al. Research progress in hydrate-based technologies and processes in China: a review[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 1998-2013. |
104 | 孙文娟, 曹学文, 杨文, 等. 超声速喷管在天然气脱碳中的应用初探[J]. 天然气化工(C1化学与化工), 2017, 42(2): 101-105. |
Sun W J, Cao X W, Yang W, et al. Research on the application of supersonic nozzle in natural gas decarburization[J]. Natural Gas Chemical Industry, 2017, 42(2): 101-105. | |
105 | Chen J N, Jiang W M, Han C Y, et al. Study on supersonic swirling condensation characteristics of CO2 in Laval nozzle[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103672. |
106 | Chen J N, Jiang W M, Han C Y, et al. Numerical study on the influence of supersonic nozzle structure on the swirling condensation characteristics of CO2[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103753. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[4] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[5] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[6] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[7] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[8] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[9] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[10] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[11] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[12] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[13] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[14] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[15] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||