化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6254-6261.DOI: 10.11949/0438-1157.20211095
收稿日期:
2021-08-09
修回日期:
2021-11-10
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
王玉军
作者简介:
谢煜(1994—),女,博士研究生,基金资助:
Received:
2021-08-09
Revised:
2021-11-10
Online:
2021-12-05
Published:
2021-12-22
Contact:
Yujun WANG
摘要:
哌拉西林是一种重要的抗生素,它是利用氨苄西林水溶液和4-乙基-2,3-二氧-1-哌嗪甲酰氯(EDPC)的二氯甲烷溶液在油水界面处反应得到的。利用恒界面池研究界面表观合成反应动力学,确定符合一级反应动力学模型。详细讨论了搅拌速率、比界面积、pH、温度对反应速率的影响,实验结果表明,当搅拌速率大于250 r/min时出现与搅拌强度无关的化学反应控制“坪区”,在“坪区”下,反应速率常数随比界面积、pH、温度增大而增大。通过温度与反应速率常数的关系,得到反应的动力学数据与热力学数据,并通过与密度泛函理论(DFT)结合推导反应机理。
中图分类号:
谢煜, 王玉军. 哌拉西林非均相合成反应动力学的研究[J]. 化工学报, 2021, 72(12): 6254-6261.
Yu XIE, Yujun WANG. A study on kinetics of heterogeneous synthesis of piperacillin[J]. CIESC Journal, 2021, 72(12): 6254-6261.
时间/min | 流动相A/% | 流动相B/% |
---|---|---|
0 | 90 | 10 |
5 | 85 | 15 |
10 | 65 | 35 |
35 | 55 | 45 |
60 | 35 | 65 |
65 | 90 | 10 |
75 | 90 | 10 |
表1 流动相梯度
Table 1 Mobile phase gradient
时间/min | 流动相A/% | 流动相B/% |
---|---|---|
0 | 90 | 10 |
5 | 85 | 15 |
10 | 65 | 35 |
35 | 55 | 45 |
60 | 35 | 65 |
65 | 90 | 10 |
75 | 90 | 10 |
图13 氨苄西林与EDPC合成哌拉西林过程中自由能变化及中间体、过渡态结构
Fig.13 Free energy changes, intermediate and transition state structures during the synthesis of piperacillin with ampicillin and EDPC
1 | Livermore D M. Current epidemiology and growing resistance of gram-negative pathogens[J]. The Korean Journal of Internal Medicine, 2012, 27(2): 128-142. |
2 | Gin A, Dilay L, Karlowsky J A, et al. Piperacillin-tazobactam: a beta-lactam/beta-lactamase inhibitor combination[J]. Expert Review of Anti-Infective Therapy, 2007, 5(3): 365-383. |
3 | Drawz S M, Bonomo R A. Three decades of beta-lactamase inhibitors[J]. Clinical Microbiology Reviews, 2010, 23(1): 160-201. |
4 | Hawkey P M, Warren R E, Livermore D M, et al. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party[J]. Journal of Antimicrobial Chemotherapy, 2018, 73(): iii2-iii78. |
5 | Livermore D M. Beta-lactamase-mediated resistance and opportunities for its control[J]. The Journal of Antimicrobial Chemotherapy, 1998, 41(): 25-41. |
6 | 李明华, 李明杰, 张万义, 等. 氧哌嗪青霉素钠的合成[J]. 黑龙江医药, 1996, 9(6): 327-328. |
Li M H, Li M J, Zhang W Y, et al. Synthesis of oxpiperazine penicillin sodium [J]. Heilongjiang Medical Journal, 1996, 9(6): 327-328. | |
7 | Steimecke G, Teubner T H, Lierathe E, et al. Prepn. of piperacillin from ampicillin in high yield-by reacting benzyl-penicillin with piperazine deriv., useful in treatment of e.g. lung inflammation and meningitis: DD295162-A[P]. 1991-10-24. |
8 | 李忠华. 哌拉西林钠的合成新工艺[J]. 山西医科大学学报, 2002, 33(4): 333-334. |
Li Z H. New process for the synthesis of piperacillin sodium[J]. Journal of Shanxi Medical University, 2002, 33(4): 333-334. | |
9 | 王玉军, 黄国明, 张建辉, 等. 一种利用微反应器合成哌拉西林的方法: 110294769B[P]. 2020-10-30. |
Wang Y Z, Huang G M, Zhang J H, et al. Method for synthesizing piperacillin by using micro-reactors: 110294769B[P]. 2020-10-30. | |
10 | Maruko Seiyaku K K. New2,3-di:oxo:piperazine derivs.- useful as intermediates for piperacillin having antibacterial activity: JP2032075-A[P]. 1990-02-01. |
11 | Xie Y, Huang G M, Wang Y J, et al. Synthesis of piperacillin with low impurity content using a new three-feed membrane dispersion microreactor[J]. Chemical Engineering Journal, 2020, 387: 124178. |
12 | Xie Y, Chen Q, Huang G M, et al. Scaling up microreactors for kilogram-scale synthesis of piperacillin: experiments and computational fluid dynamics simulations[J]. AIChE Journal, 2021, 67(6): e17231. |
13 | Xie Y, Huang G M, Hu W G, et al. Effects of piperacillin synthesis on the infterfacial tensions and droplet sizes[J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 53-62. |
14 | Yoshida J I, Kim H, Nagaki A. Green and sustainable chemical synthesis using flow microreactors[J]. ChemSusChem, 2011, 4(3): 331-340. |
15 |
Katritzky A R, Suzuki K, Singh S K. N-acylation in combinatorial chemistry[J]. ChemInform, 2005, 36(17). DOI:10.1002/chin.200517250.
DOI |
16 | Wang P J, Wang K, Zhang J S, et al. Kinetic study of reactions of aniline and benzoyl chloride in a microstructured chemical system[J]. AIChE Journal, 2015, 61(11): 3804-3811. |
17 | 周曌. 水相中的达参反应及N-酰基化反应研究[D]. 重庆: 重庆大学, 2018. |
Zhou Z. Investigation on darzens reaction and N-acylation reaction in aqueous phase[D]. Chongqing: Chongqing University, 2018. | |
18 | 李洲. 萃取动力学研究实验装置的评介 (一)恒界面池的型式和操作特性[J]. 化工冶金, 1987(3): 47-57. |
Li Z. A review on experimental installations for research of extraction kinetics(1): Constant interfacial area cell(Lewis cell) and its mass-transfer characteristics[J]. Engineering Chemistry & Metallurgy, 1987(3): 47-57. | |
19 | 彭小五, 李丽娟, 时东, 等. 2-丁基-1-正辛醇萃取硼酸的动力学研究[J]. 盐湖研究, 2020, 28(3): 79-84. |
Peng X W, Li L J, Shi D, et al. Kinetics of extraction of boric acid with 2-butyl-1-n-octanol[J]. Journal of Salt Lake Research, 2020, 28(3): 79-84. | |
20 | 周革菲, 张曼平, 黄凯美. 恒界面池法研究TBP从盐酸中萃取铁的动力学[J]. 莱阳农学院学报, 2000, 17(3): 199-202. |
Zhou G F, Zhang M P, Huang K M. Study on the kinetic of tri-n-butyl phosphate as a extractant for extraction of iron in toluene by the method of invariable interface[J]. Journal of Laiyang Agricultural College, 2000, 17(3): 199-202. | |
21 | 孙思修, 薛梅, 杨永会, 等. 溶剂萃取动力学研究方法: 恒界面池法[J]. 化学通报, 1996, 59(7): 50-52. |
Sun S X, Xue M, Yang Y H, et al. Research methods for solvent extraction kinetics: constant interfacial cell method[J]. Chemistry, 1996, 59(7): 50-52. | |
22 | 刘向楠, 党亚固, 费德君, 等. 乳化液膜萃取Cr(Ⅲ)的内相反萃步骤动力学研究[J]. 化学工程, 2015, 43(11): 25-29. |
Liu X N, Dang Y G, Fei D J, et al. Stripping reaction at internal phase of extracting Cr(Ⅲ) by emulsion liquid membranes[J]. Chemical Engineering (China), 2015, 43(11): 25-29. | |
23 | 金士威, 易琼, 张旭, 等. 应用恒界面池法研究磷酸三丁酯萃取磷酸的动力学[J]. 武汉工程大学学报, 2011, 33(2): 34-37. |
Jin S W, Yi Q, Zhang X, et al. Studies on extraction kinetics of phosphoric acid by tributyl phosphate using method of constant interfacial area stirred cell[J]. Journal of Wuhan Institute of Technology, 2011, 33(2): 34-37. | |
24 | Liu K K, Xin H L, Han M H. Elucidation of key factors in nickel-diphosphines catalyzed isomerization of 2-methyl-3-butenenitrile[J]. Journal of Catalysis, 2019, 377: 13-19. |
25 | Liu K K, Wang T F, Han M H. Rational design of efficient steric catalyst for isomerization of 2-methyl-3-butenenitrile[J]. Molecular Catalysis, 2020, 498: 111259. |
26 | Scalmani G, Barone V, Mennucci B, et al. Gaussian 09, Revision E.01[CP]. Gaussian, Inc.,2009. |
27 | Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A, 1988, 38(6): 3098-3100. |
28 | Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review. B, Condensed Matter, 1988, 37(2): 785-789. |
29 | Becke A D. Density-functional thermochemistry (III): The role of exact exchange[J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652. |
30 | Krishnan R, Binkley J S, Seeger R, et al. Self-consistent molecular orbital methods (XX): A basis set for correlated wave functions[J]. The Journal of Chemical Physics, 1980, 72(1): 650-654. |
31 | Mó O, Yáñez M. Influence of polarization functions on molecular electrostatic potentials[J]. Theoretica Chimica Acta, 1978, 47(4): 263-273. |
32 | Fukui K. The path of chemical reactions—the IRC approach[J]. Accounts of Chemical Research, 1981, 14(12): 363-368. |
33 | Fukui K. Formulation of the reaction coordinate[J]. The Journal of Physical Chemistry, 1970, 74(23): 4161-4163. |
34 | Yang X L, Zhang J W, Fang X H. Extraction kinetics of niobium by tertiary amine N235 using Lewis cell[J]. Hydrometallurgy, 2015, 151: 56-61. |
35 | Zhou R, Li T T, Su Y, et al. Removal of sulfanilic acid from wastewater by thermally activated persulfate process: oxidation performance and kinetic modeling[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(10): 3208-3216. |
[1] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[2] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[3] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[4] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[5] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[6] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[7] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[8] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[9] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[10] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[11] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[12] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[13] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[14] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[15] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||