化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1369-1378.DOI: 10.11949/0438-1157.20211444
叶茂林1,2(),谭烽华1,李宇萍1(),廖玉河1,王晨光1(),马隆龙1
收稿日期:
2021-10-12
修回日期:
2021-12-22
出版日期:
2022-03-15
发布日期:
2022-03-14
通讯作者:
李宇萍,王晨光
作者简介:
叶茂林(1996—),男,硕士研究生,基金资助:
Maolin YE1,2(),Fenghua TAN1,Yuping LI1(),Yuhe LIAO1,Chenguang WANG1(),Longlong MA1
Received:
2021-10-12
Revised:
2021-12-22
Online:
2022-03-15
Published:
2022-03-14
Contact:
Yuping LI,Chenguang WANG
摘要:
生物质热化学气化合成混合醇技术具有工艺相对简单、产物的能源化工应用广泛等优点,为准确评价该技术的资源能源消耗、辨析合成燃料的环境性能,基于生命周期分析框架和ReCiPe2016中点评价方法,对农林废弃玉米秸秆和木屑经气化、催化合成混合醇工艺的清单和9种环境影响类型开展分析和比较。结果表明:农林业阶段均为环境影响的主要阶段,秸秆混合醇生命周期影响高于木屑混合醇。前者的臭氧层耗竭潜值、海洋和淡水富营养化潜值、全球变暖潜值均为木屑混合醇相应结果的9倍以上。废弃物原料高碳含量和高混合醇收率有利于降低资源消耗和环境影响。与石化汽油相比,秸秆和木屑混合醇的全球变暖和化石能源消耗潜值均降低40%以上。
中图分类号:
叶茂林, 谭烽华, 李宇萍, 廖玉河, 王晨光, 马隆龙. 农林废弃物气化合成混合醇生命周期环境影响分析[J]. 化工学报, 2022, 73(3): 1369-1378.
Maolin YE, Fenghua TAN, Yuping LI, Yuhe LIAO, Chenguang WANG, Longlong MA. Life cycle environmental impact assessment of mixed alcohol via gasification of agricultural and forestry residues and catalytic synthesis[J]. CIESC Journal, 2022, 73(3): 1369-1378.
原料 | 工业分析/%(质量) | 元素分析/%(质量,干基) | 低位热值/(MJ/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
灰分 | 可挥发分 | 固定碳 | 含水量 | C | H | O | N | S | |||
玉米秸秆[ | 6.6 | 64.5 | 28.9 | 50.0 | 39.8 | 5.08 | 47.4 | 0.94 | 0.23 | 13.5 | |
木屑[ | 0.9 | 83.8 | 15.3 | 50.0 | 50.9 | 6.04 | 41.9 | 0.17 | 0.09 | 18.6 |
表1 农林废弃物的工业分析和元素分析
Table 1 Proximate and ultimate analysis of biomass feedstocks
原料 | 工业分析/%(质量) | 元素分析/%(质量,干基) | 低位热值/(MJ/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
灰分 | 可挥发分 | 固定碳 | 含水量 | C | H | O | N | S | |||
玉米秸秆[ | 6.6 | 64.5 | 28.9 | 50.0 | 39.8 | 5.08 | 47.4 | 0.94 | 0.23 | 13.5 | |
木屑[ | 0.9 | 83.8 | 15.3 | 50.0 | 50.9 | 6.04 | 41.9 | 0.17 | 0.09 | 18.6 |
项目 | 玉米秸秆混合醇 | 木屑混合醇 | |||
---|---|---|---|---|---|
质量/kg | 能量/(MJ/kg原料) | 质量/kg | 能量/(MJ/kg原料) | ||
输入 | |||||
原料 | 1 | 13.5 | 1 | 18.6 | |
输出 | |||||
混合醇 | 0.15 | 4.0 | 0.31 | 8.52 | |
制取过程 | |||||
电耗 | 0.73 | 1.17 | |||
蒸汽消耗 | 0.29 | 0.45 | |||
能量效率/% | 29.7 | 45.8 |
表2 混合醇制取系统的能量分析
Table 2 Energy analysis for mixed alcohol production
项目 | 玉米秸秆混合醇 | 木屑混合醇 | |||
---|---|---|---|---|---|
质量/kg | 能量/(MJ/kg原料) | 质量/kg | 能量/(MJ/kg原料) | ||
输入 | |||||
原料 | 1 | 13.5 | 1 | 18.6 | |
输出 | |||||
混合醇 | 0.15 | 4.0 | 0.31 | 8.52 | |
制取过程 | |||||
电耗 | 0.73 | 1.17 | |||
蒸汽消耗 | 0.29 | 0.45 | |||
能量效率/% | 29.7 | 45.8 |
项目 | 玉米秸秆 | 木屑 |
---|---|---|
农林业阶段 | ||
氮肥/g | 0.70 | 0.06 |
磷肥/g | 0.21 | 0.02 |
钾肥/g | 0.84 | 0.04 |
复合肥/g | 0.04 | |
柴油/g | 0.37 | 0.08 |
农药/mg | 10.9 | 9.10 |
电力/Wh | 2.46 | |
土壤排放CO2/g | 22.9 | |
土壤排放N2O/mg | 18.3 | 0.4 |
收储运阶段 | ||
柴油/g | 0.57 | 0.55 |
电力/Wh | 5.39 | |
运输/(kg?km) | 12.5 | 5.87 |
制取阶段 | ||
干基原料(生物源碳)/kg | 0.25(0.10) | 0.12(0.06) |
橄榄石/g | 0.66 | 0.33 |
氧化镁/mg | 73.2 | 4.39 |
补充水/kg | 0.15 | 0.08 |
催化剂/mg | 2.71 | 0.62 |
水处理试剂/mg | 2.89 | 2.07 |
混合醇碳(生物源)/kg | 0.02 | 0.02 |
烟气排放碳(生物源)/kg | 0.08 | 0.04 |
废物排放碳(生物源)/kg | 1.4×10-6 | 1.25×10-6 |
醇运输阶段/(kg?km) | 3.66 | 3.66 |
表3 1 MJ混合醇生命周期的主要清单
Table 3 Main life cycle inventory for 1 MJ mixed alcohols
项目 | 玉米秸秆 | 木屑 |
---|---|---|
农林业阶段 | ||
氮肥/g | 0.70 | 0.06 |
磷肥/g | 0.21 | 0.02 |
钾肥/g | 0.84 | 0.04 |
复合肥/g | 0.04 | |
柴油/g | 0.37 | 0.08 |
农药/mg | 10.9 | 9.10 |
电力/Wh | 2.46 | |
土壤排放CO2/g | 22.9 | |
土壤排放N2O/mg | 18.3 | 0.4 |
收储运阶段 | ||
柴油/g | 0.57 | 0.55 |
电力/Wh | 5.39 | |
运输/(kg?km) | 12.5 | 5.87 |
制取阶段 | ||
干基原料(生物源碳)/kg | 0.25(0.10) | 0.12(0.06) |
橄榄石/g | 0.66 | 0.33 |
氧化镁/mg | 73.2 | 4.39 |
补充水/kg | 0.15 | 0.08 |
催化剂/mg | 2.71 | 0.62 |
水处理试剂/mg | 2.89 | 2.07 |
混合醇碳(生物源)/kg | 0.02 | 0.02 |
烟气排放碳(生物源)/kg | 0.08 | 0.04 |
废物排放碳(生物源)/kg | 1.4×10-6 | 1.25×10-6 |
醇运输阶段/(kg?km) | 3.66 | 3.66 |
Impact category | Corn stalk | Wood chips | Ratio |
---|---|---|---|
GWP/(g CO2 eq.) | 51.8 | 5.63 | 9.2 |
ODP/(mg CFC11 eq.) | 0.39 | 0.021 | 18.3 |
PM2.5/(mg PM2.5 eq.) | 47.8 | 14.7 | 3.25 |
AP/(mg SO2 eq.) | 110.8 | 31.2 | 3.55 |
FEP/(mg P eq.) | 5.22 | 0.52 | 10.1 |
MEP/(mg N eq.) | 2.26 | 0.17 | 13.1 |
TEP/(kg 1,4-DCB) | 0.105 | 0.036 | 2.93 |
HTP/(kg 1,4-DCB) | 0.021 | 0.003 | 7.73 |
FDP/MJ | 0.23 | 0.069 | 3.31 |
表4 1 MJ 混合醇的环境影响特征化结果
Table 4 Characterized results of environmental impact for 1 MJ mixed alcohols
Impact category | Corn stalk | Wood chips | Ratio |
---|---|---|---|
GWP/(g CO2 eq.) | 51.8 | 5.63 | 9.2 |
ODP/(mg CFC11 eq.) | 0.39 | 0.021 | 18.3 |
PM2.5/(mg PM2.5 eq.) | 47.8 | 14.7 | 3.25 |
AP/(mg SO2 eq.) | 110.8 | 31.2 | 3.55 |
FEP/(mg P eq.) | 5.22 | 0.52 | 10.1 |
MEP/(mg N eq.) | 2.26 | 0.17 | 13.1 |
TEP/(kg 1,4-DCB) | 0.105 | 0.036 | 2.93 |
HTP/(kg 1,4-DCB) | 0.021 | 0.003 | 7.73 |
FDP/MJ | 0.23 | 0.069 | 3.31 |
1 | Dutta A, Talmadge M, Hensley J, et al. Techno-economics for conversion of lignocellulosic biomass to ethanol by indirect gasification and mixed alcohol synthesis[J]. Environmental Progress & Sustainable Energy, 2012, 31(2): 182-190. |
2 | Gainey B, Yan Z M, Lawler B. Autoignition characterization of methanol, ethanol, propanol, and butanol over a wide range of operating conditions in LTC/HCCI[J]. Fuel, 2021, 287: 119495. |
3 | D'Amato D, Gaio M, Semenzin E. A review of LCA assessments of forest-based bioeconomy products and processes under an ecosystem services perspective[J]. Science of the Total Environment, 2020, 706: 135859. |
4 | Hauschild M Z, Goedkoop M, Guinée J, et al. Identifying best existing practice for characterization modeling in life cycle impact assessment[J]. International Journal of Life Cycle Assessment, 2013, 18(3): 683-697. |
5 | Peng H, Wang B F, Yang F L, et al. Study on the environmental effects of heavy metals in coal gangue and coal combustion by ReCiPe2016 for life cycle impact assessment[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1402-1408. |
6 | Bogacka M. Best practice in environmental impact evaluation based on LCA-methodologies review[C]// 14th International Multidisciplinary Scientific GeoConference & EXPO SGEM 2014. Albena, Bulgaria, 2014: 101-108. |
7 | Cavalett O, Chagas M F, Seabra J E A, et al. Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods[J]. International Journal of Life Cycle Assessment, 2013, 18(3): 647-658. |
8 | Turk J, Oven P, Poljanšek I, et al. Evaluation of an environmental profile comparison for nanocellulose production and supply chain by applying different life cycle assessment methods[J]. Journal of Cleaner Production, 2020, 247: 119107. |
9 | Roy P, Tokuyasu K, Orikasa T, et al. A review of life cycle assessment (LCA) of bioethanol from lignocellulosic biomass[J]. Japan Agricultural Research Quarterly: JARQ, 2012, 46(1): 41-57. |
10 | 郭鹏坤, 李攀, 常春, 等. 计算机模拟技术在生物质转化中的应用研究进展[J]. 化工进展, 2020, 39(8): 3027-3040. |
Guo P K, Li P, Chang C, et al. Advances in the application of computer simulation technology in biomass conversion[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3027-3040. | |
11 | Patel M, Zhang X L, Kumar A. Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1486-1499. |
12 | Al-Mawali K S, Osman A I, Al-Muhtaseb A H, et al. Life cycle assessment of biodiesel production utilising waste date seed oil and a novel magnetic catalyst: a circular bioeconomy approach[J]. Renewable Energy, 2021, 170: 832-846. |
13 | 郭金凤, 王树荣, 尹倩倩, 等. 生物质经甲醇法和费托法制取汽油的生命周期评价[J]. 太阳能学报, 2015, 36(9): 2052-2058. |
Guo J F, Wang S R, Yin Q Q, et al. Life cycle assessment comparision of biomass to gasoline through MTG and STG methods[J]. Acta Energiae Solaris Sinica, 2015, 36(9): 2052-2058. | |
14 | 张溪, 张立龙, 李瑞, 等. 基于能量集成的秸秆生物质快速热解生命周期评价[J]. 化工学报, 2021, 72(5): 2792-2800. |
Zhang X, Zhang L L, Li R, et al. Life cycle assessment of straw fast pyrolysis based on energy integration[J]. CIESC Journal, 2021, 72(5): 2792-2800. | |
15 | Lima  M F, Torres E A, Kiperstok A, et al. Environmental impacts of the biodiesel production chain of cotton seed in Bahia, Brazil[J]. Clean Technologies and Environmental Policy, 2017, 19(5): 1523-1534. |
16 | 王康, 潘忠, 李永恒, 等. 陈化水稻燃料乙醇全生命周期净能量分析[J]. 生物加工过程, 2019, 17(4): 359-364. |
Wang K, Pan Z, Li Y H, et al. Net energy analysis for aged rice fuel ethanol in life cycle[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(4): 359-364. | |
17 | Nogueira G P, McManus M C, Leak D J, et al. Are eucalyptus harvest residues a truly burden-free biomass source for bioenergy? A deeper look into biorefinery process design and life cycle assessment[J]. Journal of Cleaner Production, 2021, 299: 126956. |
18 | 衡丽君. 生物质定向热解制多元醇燃料过程模拟及全生命周期碳足迹研究[D]. 南京: 东南大学, 2019. |
Heng L J. Study on process simulation of producing polyol fuel via oriented pyrolysis of biomass and full life cycle carbon footprint[D]. Nanjing: Southeast University, 2019. | |
19 | Heng L J, Zhang H Y, Xiao J, et al. Life cycle assessment of polyol fuel from corn stover via fast pyrolysis and upgrading[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2733-2740. |
20 | Ardolino F, Arena U. Biowaste-to-biomethane: an LCA study on biogas and syngas roads[J]. Waste Management, 2019, 87: 441-453. |
21 | Daystar J, Reeb C, Venditti R, et al. Life-cycle assessment of bioethanol from pine residues via indirect biomass gasification to mixed alcohols[J]. Forest Products Journal, 2012, 62(4): 314-325. |
22 | Daystar J, Reeb C, Gonzalez R, et al. Environmental life cycle impacts of cellulosic ethanol in the southern US produced from loblolly pine, eucalyptus, unmanaged hardwoods, forest residues, and switchgrass using a thermochemical conversion pathway[J]. Fuel Processing Technology, 2015, 138: 164-174. |
23 | Reyes Valle C, Villanueva Perales A L, Vidal-Barrero F, et al. Integrated economic and life cycle assessment of thermochemical production of bioethanol to reduce production cost by exploiting excess of greenhouse gas savings[J]. Applied Energy, 2015, 148: 466-475. |
24 | 陶炜, 肖军, 杨凯. 生物质气化费托合成制航煤生命周期评价[J]. 中国环境科学, 2018, 38(1): 383-391. |
Tao W, Xiao J, Yang K. Life cycle assessment of jet fuel from biomass gasification and Fischer-Tropsch synthesis[J]. China Environmental Science, 2018, 38(1): 383-391. | |
25 | Soam S, Kumar R, Gupta R P, et al. Life cycle assessment of fuel ethanol from sugarcane molasses in northern and western India and its impact on Indian biofuel programme[J]. Energy, 2015, 83: 307-315. |
26 | Ou L W, Li B Y, Dang Q, et al. Understanding uncertainties in the economic feasibility of transportation fuel production using biomass gasification and mixed alcohol synthesis[J]. Energy Technology, 2016, 4(3): 441-448. |
27 | Wang C B, Chang Y, Zhang L X, et al. Quantifying uncertainties in greenhouse gas accounting of biomass power generation in China: system boundary and parameters[J]. Energy, 2018, 158: 121-127. |
28 | Krzyżaniak M, Stolarski M J, Warmiński K. Life cycle assessment of poplar production: environmental impact of different soil enrichment methods[J]. Journal of Cleaner Production, 2019, 206: 785-796. |
29 | Rajagopalan N, Venditti R, Kelley S, et al. Multi-attribute uncertainty analysis of the life cycle of lignocellulosic feedstock for biofuel production[J]. Biofuels Bioproducts and Biorefining, 2017, 11(2): 269-280. |
30 | Huijbregts M A J, Steinmann Z J N, Elshout P M F, et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level[J]. International Journal of Life Cycle Assessment, 2017, 22(2): 138-147. |
31 | Yang W, Zhu Y J, Cheng W, et al. Characteristics of particulate matter emitted from agricultural biomass combustion [J]. Energy & Fuels, 2017, 31(7): 7493-7501. |
32 | Phillips S, Aden A, Jechura J, et al. Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass[R]. Office of Scientific and Technical Information (OSTI), 2007. |
33 | 李巧. 基于㶲理论的生物质分级气化制氢系统的综合性能评价[D]. 南京: 东南大学, 2019. |
Li Q. Integrated performance evaluation of hydrogen production from biomass staged-gasification based on exergy theory[D]. Nanjing: Southeast University, 2019. | |
34 | 熊简安然, 张丛志, 张佳宝, 等. 不同施氮水平下玉米农田土壤呼吸及碳平衡研究[J]. 中国农学通报, 2017, 33(1): 89-95. |
Xiong J A R, Zhang C Z, Zhang J B, et al. Soil respiration and carbon balance under different nitrogen application levels in maize field[J]. Chinese Agricultural Science Bulletin, 2017, 33(1): 89-95. | |
35 | 张黛静, 胡晓, 马建辉, 等. 耕作和培肥对豫中区小麦-玉米轮作系统土壤氮平衡和温室气体排放的影响[J]. 应用生态学报, 2021, 32(5): 1753-1760. |
Zhang D J, Hu X, Ma J H, et al. Effects of tillage and fertility on soil nitrogen balance and greenhouse gas emissions in a wheat-maize rotation system in Central Henan Province, China[J]. Chinese Journal of Applied Ecology 2021, 32(5): 1753-1760. | |
36 | Wong A, Zhang H, Kumar A. Life cycle water footprint of hydrogenation-derived renewable diesel production from lignocellulosic biomass[J]. Water Research, 2016, 102: 330-345. |
37 | 吕子婷, 仲兆平, 石坤, 等. 稻壳热解提质制取生物油的LCA分析[J]. 中国环境科学, 2017, 37(5): 1844-1851. |
Lyu Z T, Zhong Z P, Shi K, et al. Life cycle assessment of biofuels production via rice husk fast pyrolysis and upgrading[J]. China Environmental Science, 2017, 37(5): 1844-1851. | |
38 | Iribarren D, Susmozas A, Dufour J. Life-cycle assessment of Fischer-Tropsch products from biosyngas[J]. Renewable Energy, 2013, 59: 229-236. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[3] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[4] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[5] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[6] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[7] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[8] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[9] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[10] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[11] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[12] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[13] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[14] | 吕阳光, 左培培, 杨正金, 徐铜文. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606. |
[15] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||