化工学报 ›› 2022, Vol. 73 ›› Issue (8): 3553-3564.DOI: 10.11949/0438-1157.20220277
收稿日期:
2022-03-01
修回日期:
2022-05-24
出版日期:
2022-08-05
发布日期:
2022-09-06
通讯作者:
董鑫
作者简介:
张建伟(1964—),男,博士,教授,zhangjianwei@syuct. edu.cn
基金资助:
Jianwei ZHANG, Weifeng GAO, Xin DONG(), Ying FENG
Received:
2022-03-01
Revised:
2022-05-24
Online:
2022-08-05
Published:
2022-09-06
Contact:
Xin DONG
摘要:
利用大涡模拟(LES)方法研究了撞击流反应器内流场涡特性,分析撞击区域流体流动特征。改变进口速度、喷嘴间距,讨论流场速度、涡量和平面涡能量分布规律,并分析了流场流型、涡演化过程和涡核形式。在反应器内靠近撞击驻点的涡尺寸小、脉动性高,随着撞击距离的增加,流体速度逐渐减小,涡影响范围变大。平均涡量和平均涡能量随进口速度的增加,先增加后减小。结合Q判据分析了反应器内涡的演化过程和流体流型。根据径向射流涡的演变过程,得到径向射流两侧涡演化的周期,在0.15~0.20 s之间。撞击区的涡结构主要为马蹄涡和肋状涡,在出口位置存在涡环。研究结果为深入分析撞击流反应器流体运动规律和优化反应器提供了理论参考。
中图分类号:
张建伟, 高伟峰, 董鑫, 冯颖. 浸没式撞击流反应器流场涡特性的数值研究[J]. 化工学报, 2022, 73(8): 3553-3564.
Jianwei ZHANG, Weifeng GAO, Xin DONG, Ying FENG. Numerical study on vortex characteristics in submerged impinging stream reactor[J]. CIESC Journal, 2022, 73(8): 3553-3564.
图3 撞击流反应器实验示意图1—撞击流反应器;2—电磁流量计;3—阀门;4—离心泵;5—进料桶;6—出料桶;7—示踪剂;8—蠕动泵;9—激光发射器;10—激光控制器;11—同步器;12—计算机;13—CCD摄像机
Fig.3 Schematic diagram of impinging stream reactor experiment1—impinging stream reactor; 2—electromagnetic flowmeter; 3—valve; 4—centrifugal pump; 5—feed bucket; 6—discharge bucket; 7—tracer; 8—peristaltic pump; 9—laser transmitter; 10—laser controller;11—synchronizer; 12—computer; 13—CCD camera
L/D | tc/s |
---|---|
1 | 18 |
3 | 20 |
5 | 15 |
表1 撞击流反应器不同L/D和tc关系
Table 1 Comparison of L/D and tc of impinging stream reactor
L/D | tc/s |
---|---|
1 | 18 |
3 | 20 |
5 | 15 |
1 | Li P, Zhao L Y, Wang S, et al. Impinging streams application in mass production of rare earth ions doped upconversion luminescence microparticles[J]. Journal of Sol-Gel Science and Technology, 2022, 101(1): 215-226. |
2 | 张建伟, 安丰元, 董鑫, 等. 基于阶跃射流的撞击流反应器流场动态特性分析[J]. 化工学报, 2022, 73(2): 622-633. |
Zhang J W, An F Y, Dong X, et al. Analysis of dynamic characteristics of flow field in impinging stream reactor based on step jet[J]. CIESC Journal, 2022, 73(2): 622-633. | |
3 | 盛磊, 李培钰, 牛宇超, 等. 微尺度过程强化的结晶颗粒制备研究进展[J]. 化工学报, 2021, 72(1): 143-157. |
Sheng L, Li P Y, Niu Y C, et al. Progresses in the preparation of micro-scale process-enhanced crystalline particles[J]. CIESC Journal, 2021, 72(1): 143-157. | |
4 | Borisov A B, Dolgikh D V. New types of three-dimensional vortices in the Heisenberg model[J]. Physics of Metals and Metallography, 2021, 122(5): 423-427. |
5 | 张建伟, 马繁荣, 张志刚, 等. 双组水平喷嘴撞击流反应器流场POD分析[J]. 化工学报, 2018, 69(7): 2916-2925. |
Zhang J W, Ma F R, Zhang Z G, et al. POD analysis of flow field in horizontal two-group nozzle impinging stream reactor[J]. CIESC Journal, 2018, 69(7): 2916-2925. | |
6 | Cao T Y, He Z X, Zhou H, et al. Experimental study on the effect of vortex cavitation in scaled-up diesel injector nozzles and spray characteristics[J]. Experimental Thermal and Fluid Science, 2020, 113: 110016. |
7 | Hu J, Zhang W P, Guo H, et al. Numerical simulation of propeller wake vortex-rudder interaction in oblique flows[J]. Ships and Offshore Structures, 2021, 16(2): 144-155. |
8 | 张建伟, 高伟峰, 冯颖, 等. 撞击流反应器内涡特性研究进展[J]. 化工进展, 2021, 40(11): 5883-5893. |
Zhang J W, Gao W F, Feng Y, et al. Research progress of vortex characteristics of impinging stream reactor[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5883-5893. | |
9 | Schwertfirm F, Gradl J, Schwarzer H C, et al. The low Reynolds number turbulent flow and mixing in a confined impinging jet reactor[J]. International Journal of Heat and Fluid Flow, 2007, 28(6): 1429-1442. |
10 | 杜柯江, 李伟锋, 单志昊, 等. 小型受限撞击流反应器内混合特征及激励强化[J]. 化工学报, 2015, 66(7): 2395-2401. |
Du K J, Li W F, Shan Z H, et al. Mixing characteristics and enhancement of excitation in mini confined impinging jets reactor[J]. CIESC Journal, 2015, 66(7): 2395-2401. | |
11 | Gao Z M, Han J, Xu Y D, et al. Particle image velocimetry (PIV) investigation of flow characteristics in confined impinging jet reactors[J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11779-11786. |
12 | 张经纬. 撞击流反应器内复杂流动模式及混合机理[D]. 上海: 华东理工大学, 2020. |
Zhang J W. Complex flow regime and mixing mechanism in impinging jets reactors[D]. Shanghai: East China University of Science and Technology, 2020. | |
13 | Böhm B, Stein O, Kempf A, et al. In-nozzle measurements of a turbulent opposed jet using PIV[J]. Flow, Turbulence and Combustion, 2010, 85(1): 73-93. |
14 | Sultan M A, Fonte C P, Dias M M, et al. Experimental study of flow regime and mixing in T-jets mixers[J]. Chemical Engineering Science, 2012, 73: 388-399. |
15 | Yi M Q, Bau H H. The kinematics of bend-induced mixing in micro-conduits[J]. International Journal of Heat and Fluid Flow, 2003, 24(5): 645-656. |
16 | 温谦, 沙江, 刘应征. 淹没射流湍流场的TR-PIV测量及流场结构演变的POD分析[J]. 实验流体力学, 2014, 28(4): 16-24. |
Wen Q, Sha J, Liu Y Z. TR-PIV measurement of the turbulent submerged jet and POD analysis of the dynamic structure[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(4): 16-24. | |
17 | Judd K P, Smith G B, Handler R A, et al. The thermal signature of a low Reynolds number submerged turbulent jet impacting a free surface[J]. Physics of Fluids, 2008, 20(11): 115102. |
18 | 许鑫磊, 严嘉玮, 张巍, 等. T型反应器内非稳态吞噬流机理[J]. 化工学报, 2018, 69(12): 5073-5080. |
Xu X L, Yan J W, Zhang W, et al. Unsteady engulfment flow regime in T-jets reactor[J]. CIESC Journal, 2018, 69(12): 5073-5080. | |
19 | Wu D, Li J, Liu Z H, et al. Eulerian and Lagrangian stagnation plane behavior of moderate Reynolds number round opposed-jets flow[J]. Computers & Fluids, 2016, 133: 116-128. |
20 | Li H, Anand N K, Hassan Y A, et al. Large eddy simulations of the turbulent flows of twin parallel jets[J]. International Journal of Heat and Mass Transfer, 2019, 129: 1263-1273. |
21 | Hrisheekesh K, Agrawal A, Sharma A, et al. On the mechanism of symmetric vortex shedding[J]. Journal of Fluids and Structures, 2019, 91: 102706. |
22 | 郭栋, 梁海峰. 气液混合式撞击流反应器流场特性数值模拟[J]. 过程工程学报, 2021(3): 277-285. |
Guo D, Liang H F. Numerical simulation of flow field characteristics of gas-liquid mixed impinging stream reactor[J]. The Chinese Journal of Process Engineering, 2021(3): 277-285. | |
23 | Zhang Z H, Tu J H, Zhang K, et al. Vortex characteristics and flow-induced forces of the wavy cylinder at a subcritical Reynolds number[J]. Ocean Engineering, 2021, 222: 108593. |
24 | Zhao Z Y, Wen F B, Tang X L, et al. Large eddy simulation of an inclined jet in crossflow with vortex generators[J]. International Journal of Heat and Mass Transfer, 2021, 170: 121032. |
25 | Huang Y Q, Wang W Y, Lu K, et al. Flow-field evolution and vortex structure characteristics of a high-temperature buoyant jet[J]. Building and Environment, 2021, 187: 107407. |
26 | Zhang H, Yang J M, Xiao L F, et al. Large-eddy simulation of the flow past both finite and infinite circular cylinders at Re = 3900[J]. Journal of Hydrodynamics, Ser. B, 2015, 27(2): 195-203. |
27 | Lilly D K. On the application of the eddy viscosity concept in the inertial sub-range of turbulence[R]. NCAR Mansur, 1967. |
28 | Dong X R, Hao C Y, Liu C Q. Correlation between vorticity, Liutex and shear in boundary layer transition[J]. Computers & Fluids, 2022, 238: 105371. |
29 | Hunt J, Wray A A, Eddies Moin P., streams, and convergence zones in turbulent flows [C]// Proceedings of the 1988 Summer Program, 1988. |
30 | 高助威, 王娟, 王江云, 等. 基于Q判据的不同排气管直径旋风分离器内部涡分析[J]. 石油学报(石油加工), 2018, 34(6): 1172-1180. |
Gao Z W, Wang J, Wang J Y, et al. Vortex analysis for cyclone separators with different vortex finder diameters based on Q criterion[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(6): 1172-1180. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[5] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[6] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[12] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[13] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[14] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||