化工学报 ›› 2022, Vol. 73 ›› Issue (11): 4917-4927.DOI: 10.11949/0438-1157.20220901
收稿日期:
2022-06-27
修回日期:
2022-09-16
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
董鑫
作者简介:
张建伟(1964—),男,博士,教授,zhangjianwei@syuct.edu.cn
基金资助:
Jianwei ZHANG(), Baoshuai LI, Xin DONG(), Ying FENG
Received:
2022-06-27
Revised:
2022-09-16
Online:
2022-11-05
Published:
2022-12-06
Contact:
Xin DONG
摘要:
采用数值模拟方法对撞击流反应器内幂律流体的流动特性进行研究,分析了不同喷嘴间距和入口流速下清水和不同质量分数幂律流体的径向射流扩展率、径向速度衰减率、剪切应力、表观黏度等分布规律,研究表明:幂律流体中径向射流的径向速度分布规律与清水径向射流相似。随喷嘴间距的增大,扩展率增大,径向速度衰减率减小,平均剪切应力呈先增大后减小的变化规律,其中L=3D时平均剪切应力值最大,更利于流体混合。入口流速越大,扩展率越小,径向速度衰减率越大,平均剪切应力也随之增大。幂律流体的平均剪切应力大于清水,且随质量分数的增大,其扩展率增大,为清水扩展率的1.3~3.3倍,而幂律流体的径向速度衰减率从-1.268~-1.125降低到-1.144~-1.082,逐渐小于清水。幂律流体径向射流区域的剪切应力呈“M”形分布,表观黏度则呈“W”形分布,流体的流变性质对撞击流反应器内流体的流动规律影响显著。
中图分类号:
张建伟, 李保帅, 董鑫, 冯颖. 撞击流反应器内幂律流体流动特性的数值模拟[J]. 化工学报, 2022, 73(11): 4917-4927.
Jianwei ZHANG, Baoshuai LI, Xin DONG, Ying FENG. Numerical simulation of power-law fluid flow characteristics in impinging stream reactor[J]. CIESC Journal, 2022, 73(11): 4917-4927.
流体 | 喷嘴直径D/mm | 喷嘴间距L/D | 入口流速u0/(m/s) |
---|---|---|---|
清水 | 10 | 1、3、5 | 1.30、1.77、2.00 |
0.3%CMC溶液 | 10 | 1、3、5 | 1.77 |
0.4%CMC溶液 | 10 | 1、3、5 | 1.30、1.77、2.00 |
0.5%CMC溶液 | 10 | 1、3、5 | 1.77 |
表1 工况条件
Table 1 Working conditions
流体 | 喷嘴直径D/mm | 喷嘴间距L/D | 入口流速u0/(m/s) |
---|---|---|---|
清水 | 10 | 1、3、5 | 1.30、1.77、2.00 |
0.3%CMC溶液 | 10 | 1、3、5 | 1.77 |
0.4%CMC溶液 | 10 | 1、3、5 | 1.30、1.77、2.00 |
0.5%CMC溶液 | 10 | 1、3、5 | 1.77 |
流体 | 质量分数c/% | 稠度系数K/(Pa·s n ) | 流性指数n | 流体密度ρ/(kg/m3) |
---|---|---|---|---|
清水 | 0 | 0.0010 | 1 | 998.21 |
CMC溶液 | 0.3 | 0.0430 | 0.8363 | 1002.79 |
0.4 | 0.0745 | 0.8017 | 1004.54 | |
0.5 | 0.1685 | 0.7317 | 1005.43 |
表2 物性和流变参数
Table 2 Physical properties and rheological parameters
流体 | 质量分数c/% | 稠度系数K/(Pa·s n ) | 流性指数n | 流体密度ρ/(kg/m3) |
---|---|---|---|---|
清水 | 0 | 0.0010 | 1 | 998.21 |
CMC溶液 | 0.3 | 0.0430 | 0.8363 | 1002.79 |
0.4 | 0.0745 | 0.8017 | 1004.54 | |
0.5 | 0.1685 | 0.7317 | 1005.43 |
图3 撞击流反应器实验系统1—撞击流反应器; 2—电磁流量计; 3—阀门; 4—离心泵; 5—进料桶; 6—出料桶;7—示踪剂; 8—蠕动泵; 9—CCD相机; 10—计算机; 11—同步器; 12—激光控制器; 13—激光发射器
Fig.3 Experimental system of impinging stream reactor1—impinging stream reactor; 2—electromagnetic flowmeter; 3—valve; 4—centrifugal pump; 5—feed bucket; 6—discharge bucket; 7—tracer; 8—peristaltic pump; 9—CCD camera; 10—computer; 11—synchronizer; 12—laser controller; 13—laser transmitter
1 | 伍沅. 撞击流: 原理·性质·应用[M]. 北京: 化学工业出版社, 2006. |
Wu Y. Impinging Stream: Principles·Nature·Application[M]. Beijing: Chemical Industry Press, 2006. | |
2 | Tamir A, Huang B. Impinging stream reactors: fundamentals and applications[J]. Drying Technology, 1995, 13(1/2): 503-504. |
3 | Brito M S C A, Fonte C P, Dias M M, et al. Flow regimes and mixing of dissimilar fluids in T-jets mixers[J]. Chemical Engineering & Technology, 2022, 45(2): 355-364. |
4 | Tseng Y H, Mohanty S K, McLennan J D, et al. Algal lipid extraction using confined impinging jet mixers[J]. Chemical Engineering Science: Ⅹ, 2019, 1: 100002. |
5 | Li C, Yue S, Li M. Numerical simulation of the drying characteristics of a high-moisture particle in a dynamic asymmetric impinging stream reactor[J]. Chemical Papers, 2022, 76(1): 41-56. |
6 | Sahoo K, Kumar S. Green synthesis of sub 10 nm silver nanoparticles in gram scale using free impinging jet reactor[J]. Chemical Engineering and Processing-Process Intensification, 2021, 165: 108439. |
7 | Zhang J, Liu Y Z, Qi G S, et al. Flow characteristics in free impinging jet reactor by particle image velocimetry (PIV) investigation[J]. Fluid Dynamics Research, 2016, 48(4): 045505. |
8 | Zhang J W, Yan J J, Dong X, et al. Experimental study on turbulence properties in the dual nozzle opposed impinging stream mixer[J]. The Canadian Journal of Chemical Engineering, 2017, 95(3): 550-558. |
9 | 张建伟, 安丰元, 董鑫, 等. 基于阶跃射流的撞击流反应器流场动态特性分析[J]. 化工学报, 2022, 73(2): 622-633. |
Zhang J W, An F Y, Dong X, et al. Analysis of dynamic characteristics of flow field in impinging stream reactor based on step jet[J]. CIESC Journal, 2022, 73(2): 622-633. | |
10 | 李伟锋, 孙志刚, 刘海峰, 等. 两喷嘴对置撞击流径向射流流动特征[J]. 化工学报, 2009, 60(10): 2453-2459. |
Li W F, Sun Z G, Liu H F, et al. Flow characteristics of radial jet from two opposed jets[J]. CIESC Journal, 2009, 60(10): 2453-2459. | |
11 | 陈明, 黄海津, 王多银, 等. 半封闭圆管冲击射流流动特性PIV试验研究[J]. 振动与冲击, 2021, 40(15): 90-97, 113. |
Chen M, Huang H J, Wang D Y, et al. PIV tests for flow characteristics of impinging jet in a semi-closed circular pipe[J]. Journal of Vibration and Shock, 2021, 40(15): 90-97, 113. | |
12 | van Hout R, Rinsky V, Grobman Y G. Experimental study of a round jet impinging on a flat surface: flow field and vortex characteristics in the wall jet[J]. International Journal of Heat and Fluid Flow, 2018, 70: 41-58. |
13 | Haldenwang R, Slatter P, Chhabra R. An experimental study of non-Newtonian fluid flow in rectangular flumes in laminar, transition and turbulent flow regimes[J]. Journal of the South African Institution of Civil Engineering, 2010, 52(1): 11-19. |
14 | Srisamran C, Devahastin S. Numerical simulation of flow and mixing behavior of impinging streams of shear-thinning fluids[J]. Chemical Engineering Science, 2006, 61(15): 4884-4892. |
15 | Gharraei R, Vejdani A, Baheri S, et al. Numerical investigation on the fluid flow and heat transfer of non-Newtonian multiple impinging jets[J]. International Journal of Thermal Sciences, 2016, 104: 257-265. |
16 | Mejia-Alvarez R, Christensen K T. Polymer-induced turbulence modifications in an impinging jet[J]. Experiments in Fluids, 2012, 52(5): 1237-1260. |
17 | 杨树人, 崔海清. 石油工程非牛顿流体力学[M]. 北京: 石油工业出版社, 2013. |
Yang S R, Cui H Q. Petroleum Engineering Colleges Teaching Non-Newtonian Fluid Mechanics[M]. Beijing: Petroleum Industry Press, 2013. | |
18 | Metzner A B, Reed J C. Flow of non-Newtonian fluids—correlation of the laminar, transition, and turbulent-flow regions[J]. AIChE Journal, 1955, 1(4): 434-440. |
19 | 戴干策, 陈敏恒. 化工流体力学[M]. 2版. 北京: 化学工业出版社, 2005. |
Dai G C, Chen M H. Chemical Engineering Fluid Dynamics[M]. 2nd ed. Beijing: Chemical Industry Press, 2005. | |
20 | 刘朝霞. 湍流撞击流数值模拟与实验研究[D]. 武汉: 华中科技大学, 2007. |
Liu Z X. Numerical simulation and experimental studies of turbulent impinging streams[D]. Wuhan: Huazhong University of Science and Technology, 2007. | |
21 | 云玉新, 赵富强, 张磊, 等. 结合相关系数及改进层次分析法的油浸式变压器质量评估[J]. 重庆理工大学学报(自然科学), 2022, 36(5): 203-210. |
Yun Y X, Zhao F Q, Zhang L, et al. Quality evaluation of oil-immersed transformer based on correlation coefficient and improved analytic hierarchy process[J]. Journal of Chongqing University of Technology (Natural Science), 2022, 36(5): 203-210. | |
22 | 李志伟, 槐文信, 钱忠东. 静水环境中径向紊动射流数值模拟[J]. 水利学报, 2009, 40(11): 1320-1325. |
Li Z W, Huai W X, Qian Z D. Numerical simulation of turbulent radial jets in static ambient[J]. Journal of Hydraulic Engineering, 2009, 40(11): 1320-1325. | |
23 | Basset T, Viggiano B, Barois T, et al. Entrainment, diffusion and effective compressibility in a self-similar turbulent jet[J/OL]. Journal of Fluid Mechanics, 2022, . |
24 | Morris E M, Aleyasin S S, Biswas N, et al. Turbulent properties of triple elliptic free jets with various nozzle orientation[J]. Journal of Fluids Engineering, 2020, 142(3): 031106. |
25 | 刘成文, 李兆敏. 用LDV研究高分子添加剂射流的流场[C]// 第十三届全国水动力学研讨会文集. 北京: 海洋出版社, 1999: 129-134. |
Liu C W, Li Z M. Study on flow field of polymer additive jet by LDV[C]//Proceedings of the 13th National Symposium on Hydrodynamics. Beijing: China Ocean Press, 1999: 129-134. | |
26 | Tang Z, Rostamy N, Bergstrom D J, et al. Incomplete similarity of a plane turbulent wall jet on smooth and transitionally rough surfaces[J]. Journal of Turbulence, 2015, 16(11): 1076-1090. |
27 | 徐惊雷, 徐忠, 张堃元, 等. 冲击高度对半封闭紊流冲击射流流场影响的实验研究[J]. 实验力学, 2000, 15(4): 466-472. |
Xu J L, Xu Z, Zhang K Y, et al. An experimental study for the effect of nozzle-to-plate space on the semi-confined turbulent impinging jet flow[J]. Journal of Experimental Mechanics, 2000, 15(4): 466-472. | |
28 | 高伟峰. 水平对置式撞击流反应器流场涡特性的大涡模拟[D]. 沈阳: 沈阳化工大学, 2021. |
Gao W F. Large eddy simulation of vortex characteristics in horizontal opposed impinging stream reactor[D]. Shenyang: Shenyang University of Chemical Technology, 2021. | |
29 | Chiou C S, Gordon R J. Vortex flow of dilute polymer solutions[J]. Polymer Engineering & Science, 1980, 20(7): 456-465. |
30 | 胡建军, 朱晴, 王美达, 等. 近距离下射流冲击平板PIV实验研究[J]. 力学学报, 2020, 52(5): 1350-1361. |
Hu J J, Zhu Q, Wang M D, et al. PIV measurement of close impinging jet on flat plate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1350-1361. | |
31 | 张建伟, 牛聚超, 董鑫, 等. 撞击流反应器流场数值模拟及其混合性能优化[J]. 过程工程学报, 2022, 22(9): 1244-1252. |
Zhang J W, Niu J C, Dong X, et al. Mixing effect in two horizontal opposed impinging stream mixer[J]. The Chinese Journal of Process Engineering, 2022, 22(9): 1244-1252. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[15] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||