1 |
Jähnisch K, Hessel V, Löwe H, et al. Chemistry in microstructured reactors[J]. Angewandte Chemie, 2004, 43(4): 406-446.
|
2 |
Gemoets H P L, Su Y H, Shang M J, et al. Liquid phase oxidation chemistry in continuous-flow microreactors[J]. Chemical Society Reviews, 2016, 45(1): 83-117.
|
3 |
Mark D, Haeberle S, Roth G, et al. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications[J]. Chemical Society Reviews, 2010, 39(3): 1153-1182.
|
4 |
王冠球, 林冠屹, 朱春英, 等. 微通道反应器的一维放大及气液传质特性[J].化工学报, 2021, 72(2): 937-944.
|
|
Wang G Q, Lin G Y, Zhu C Y, et al. One-dimensional amplification and gas-liquid mass transfer characteristics of microchannel reactor[J]. CIESC Journal, 2021, 72(2): 937-944.
|
5 |
Jensen K. Flow chemistry—microreaction technology comes of age[J]. AIChE Journal, 2017, 63: 858-869.
|
6 |
Wang K, Luo G S. Microflow extraction: a review of recent development[J]. Chemical Engineering Science, 2017, 169: 18-33.
|
7 |
Zhao H L, Liu S E, Shang M J, et al. Direct oxidation of benzene to phenol in a microreactor: process parameters and reaction kinetics study[J]. Chemical Engineering Science, 2021, 246: 116907.
|
8 |
Li G X, Liu S, Dou X Y, et al. Two-stage temperature control for the synthesis of adipic acid through K/A oil oxidation in a microreactor system [J]. Industrial & Engineering Chemistry Research, 2021, 60(26): 9389-9398.
|
9 |
Son S F, Asay B W, Foley T J, et al. Combustion of nanoscale Al/MoO3 thermite in microchannels[J]. Journal of Propulsion and Power, 2007, 23(4): 715-721.
|
10 |
Song Y, Shang M J, Li J G, et al. Continuous and controllable synthesis of MnO2/PPy composites with core-shell structures for supercapacitors[J]. Chemical Engineering Journal, 2021, 405: 127059.
|
11 |
Zhang H, Lu K, Li B M, et al. Microfluidic, one-batch synthesis of Pd nanocrystals on N-doped carbon in surfactant-free deep eutectic solvents for formic acid electrochemical oxidation[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42704-42710.
|
12 |
Maeki M, Kimura N, Sato Y, et al. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems[J]. Advanced Drug Delivery Reviews, 2018, 128: 84-100.
|
13 |
Sanjay S T, Zhou W, Dou M W, et al. Recent advances of controlled drug delivery using microfluidic platforms[J]. Advanced Drug Delivery Reviews, 2018, 128: 3-28.
|
14 |
Liu C, Feng Q, Sun J. Lipid nanovesicles by microfluidics: manipulation, synthesis, and drug delivery[J]. Advanced Materials, 2019, 31(45): 1804788.
|
15 |
Damiati S, Kompella U B, Damiati S A, et al. Microfluidic devices for drug delivery systems and drug screening[J]. Genes, 2018, 9(2): 103.
|
16 |
Kulkarni M B, Goel S. Advances in continuous-flow based microfluidic PCR devices—a review [J]. Engineering Research Express, 2021, 2(4): 042001.
|
17 |
Shi X Q, Liu S E, Duanmu C S, et al. Visible-light photooxidation of benzene to phenol in continuous-flow microreactors[J]. Chemical Engineering Journal, 2021, 420: 129976.
|
18 |
Su Y H, Kuijpers K P L, König N, et al. A mechanistic investigation of the visible-light photocatalytic trifluoromethylation of heterocycles using CF3I in flow[J]. Chemistry, 2016, 22(35): 12295-12300.
|
19 |
Shen C, Zheng Q B, Shang M J, et al. Using deep learning to recognize liquid-liquid flow patterns in microchannels[J]. AIChE Journal, 2020, 66(8): e16260.
|
20 |
Kockmann N, Gottsponer M, Roberge D M. Scale-up concept of single-channel microreactors from process development to industrial production[J]. Chemical Engineering Journal, 2011, 167(2/3): 718-726.
|
21 |
Kockmann N, Roberge D M. Scale-up concept for modular microstructured reactors based on mixing, heat transfer, and reactor safety[J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(10): 1017-1026.
|
22 |
Guo W X, Zhu C Y, Fu T T, et al. Controllable droplet coalescence in the T-junction microchannel with a funnel-typed expansion chamber [J]. Industrial & Engineering Chemistry Research, 2020, 59 (22): 10298-10307.
|
23 |
Isozaki A, Harmon J, Zhou Y Q, et al. AI on a chip[J]. Lab on a Chip, 2020, 20(17): 3074-3090.
|
24 |
郭戎威, 付涛涛, 朱春英, 等. 微通道内气-液两相流及并行放大的研究进展[J]. 化学工业与工程, 2021, 38(6): 74-86.
|
|
Guo R W, Fu T T, Zhu C Y, et al. Research progress on gas-liquid two-phase flow and numbering-up strategy in microchannel[J]. Chemical Industry and Engineering, 2021, 38(6): 74-86.
|
25 |
Saber M, Commenge J M, Falk L. Microreactor numbering-up in multi-scale networks for industrial-scale applications: impact of flow maldistribution on the reactor performances[J]. Chemical Engineering Science, 2010, 65(1): 372-379.
|
26 |
Haber J, Jiang B, Maeder T, et al. Intensification of highly exothermic fast reaction by multi-injection microstructured reactor[J]. Chemical Engineering and Processing: Process Intensification, 2014, 84: 14-23.
|
27 |
Wang K, Lu Y C, Luo G S. Strategy for scaling-up of a microsieve dispersion reactor[J]. Chemical Engineering & Technology, 2014, 37(12): 2116-2122.
|
28 |
Nieves-Remacha M J, Kulkarni A A, Jensen K F. Hydrodynamics of liquid–liquid dispersion in an advanced-flow reactor[J]. Industrial & Engineering Chemistry Research, 2012, 51(50): 16251-16262.
|
29 |
Lao K L, Wang J H, Lee G B. A microfluidic platform for formation of double-emulsion droplets[J]. Microfluidics and Nanofluidics, 2009, 7(5): 709-719.
|
30 |
Moritani T, Yamada M, Seki M. Generation of uniform-size droplets by multistep hydrodynamic droplet division in microfluidic circuits[J]. Microfluidics and Nanofluidics, 2011, 11(5): 601-610.
|
31 |
Wang H, Shen Q Y, Zhu C Y, et al. Formation and uniformity of bubbles in highly viscous fluids in symmetric parallel microchannels[J]. Chemical Engineering Science, 2021, 230: 116166.
|
32 |
Tondeur D, Luo L G. Design and scaling laws of ramified fluid distributors by the constructal approach[J]. Chemical Engineering Science, 2004, 59(8/9): 1799-1813.
|
33 |
Yusuf A, Palmisano G. Three-dimensional CFD modelling of a photocatalytic parallel-channel microreactor[J]. Chemical Engineering Science, 2021, 229: 116051.
|
34 |
Liu L Y, Jiang S K, Zhu C Y, et al. Distribution of liquid-liquid two-phase flow in branching T-junction microchannels[J]. Chemical Engineering Journal, 2022, 431: 133939.
|
35 |
Tan J, Xu J H, Li S W, et al. Drop dispenser in a cross-junction microfluidic device: scaling and mechanism of break-up[J]. Chemical Engineering Journal, 2008, 136(2/3): 306-311.
|