化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1549-1560.DOI: 10.11949/0438-1157.20221317
郑书闽(), 郭鹏程, 颜建国(), 王帅, 李文博, 周淇
收稿日期:
2022-10-08
修回日期:
2023-03-31
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
颜建国
作者简介:
郑书闽(1997—),男,博士研究生,zhengshumin99@163.com
基金资助:
Shumin ZHENG(), Pengcheng GUO, Jianguo YAN(), Shuai WANG, Wenbo LI, Qi ZHOU
Received:
2022-10-08
Revised:
2023-03-31
Online:
2023-04-05
Published:
2023-06-02
Contact:
Jianguo YAN
摘要:
实验探究了微小圆管内(内径1 mm)过冷水流动沸腾的阻力特性,参数范围:热通量4.0~5.6 MW/m2,压力3.0~5.0 MPa,质量流速2000~4200 kg/(m2‧s),进口热力学干度-0.50~-0.10。获取了质量流速、压力、热通量等参数对过冷沸腾阻力的影响,并重点关注其预测方法。将测试数据与典型阻力关联式对比,结果表明,由于高热流、微通道等特殊因素,导致大部分阻力关联式的预测精度不够理想。为更准确预测高热流过冷沸腾阻力,基于LeakyReLU函数,建立了遗传算法优化的极限学习机模型(GA-ELM),其预测精度优于传统关联式(平均绝对误差为2.0%),且泛化性良好。研究工作可为微小尺度流动换热系统设计优化提供支撑。
中图分类号:
郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560.
Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel[J]. CIESC Journal, 2023, 74(4): 1549-1560.
实验参数 | 数值 |
---|---|
热通量q/(MW/m2) | 4.0~5.6 |
压力p/MPa | 3.0、4.0、5.0 |
质量流速G/(kg/(m2‧s)) | 2000~4200 |
进口温度Tin/℃ | 20~180 |
表 1 实验工况
Table 1 Test conditions
实验参数 | 数值 |
---|---|
热通量q/(MW/m2) | 4.0~5.6 |
压力p/MPa | 3.0、4.0、5.0 |
质量流速G/(kg/(m2‧s)) | 2000~4200 |
进口温度Tin/℃ | 20~180 |
实验参数 | 不确定度/% |
---|---|
压力 | ±0.26 |
压差 | ±0.78 |
流体温度 | ±0.4 |
壁面温度 | ±0.5 |
质量流速 | ±1.01 |
热通量 | ±5.35 |
表 2 参数不确定度
Table 2 Parameter uncertainties
实验参数 | 不确定度/% |
---|---|
压力 | ±0.26 |
压差 | ±0.78 |
流体温度 | ±0.4 |
壁面温度 | ±0.5 |
质量流速 | ±1.01 |
热通量 | ±5.35 |
文献 | 关联式 | 应用范围 |
---|---|---|
[ | p=0.34~2.76 MPa,G=1143~5322 kg/(m2∙s), q=0.675~4 MW/m2,d=3、 4.63 mm | |
[ | p=0.98~19.6 MPa,G=1400~3000 kg/(m2∙s), q=0.58~1.75 MW/m2,d=2.89、 6.34、 8.31 mm | |
[ | (水,C=80;R12和R134a,C=500) | p=0.8~2 MPa,G=750~3000 kg/(m2∙s),q<0.208 MW/m2,ΔTsub=2.0~47.6℃,d=5.5~9.5 mm |
[ | p=0.4~1.6 MPa,G=25000~45000 kg/(m2∙s), qcr=50~80 MW/m2,Tb, in=22~66℃, d=1.05~2.44 mm | |
[ | p=3~5 MPa,G=6000~10000 kg/(m2∙s),q=7.5~12.5 MW/m2,Tb, in=80~220℃, ΔTsub, in=40~185℃,d=9 mm,L=400 mm | |
[ | p=2~16 MPa,G=3000~45000 kg/(m2∙s),q<80 MW/m2,Tb, in=22~63℃,L=25~125 mm,d=1.05~2.44 mm,25≤L/d≤50 |
表 3 过冷沸腾阻力关联式
Table 3 Empirical correlations for subcooled boiling pressure drop
文献 | 关联式 | 应用范围 |
---|---|---|
[ | p=0.34~2.76 MPa,G=1143~5322 kg/(m2∙s), q=0.675~4 MW/m2,d=3、 4.63 mm | |
[ | p=0.98~19.6 MPa,G=1400~3000 kg/(m2∙s), q=0.58~1.75 MW/m2,d=2.89、 6.34、 8.31 mm | |
[ | (水,C=80;R12和R134a,C=500) | p=0.8~2 MPa,G=750~3000 kg/(m2∙s),q<0.208 MW/m2,ΔTsub=2.0~47.6℃,d=5.5~9.5 mm |
[ | p=0.4~1.6 MPa,G=25000~45000 kg/(m2∙s), qcr=50~80 MW/m2,Tb, in=22~66℃, d=1.05~2.44 mm | |
[ | p=3~5 MPa,G=6000~10000 kg/(m2∙s),q=7.5~12.5 MW/m2,Tb, in=80~220℃, ΔTsub, in=40~185℃,d=9 mm,L=400 mm | |
[ | p=2~16 MPa,G=3000~45000 kg/(m2∙s),q<80 MW/m2,Tb, in=22~63℃,L=25~125 mm,d=1.05~2.44 mm,25≤L/d≤50 |
文献 | MAE/% | RMSE/% | 文献 | MAE/% | RMSE/% |
---|---|---|---|---|---|
[ | 103.19 | 150.78 | [ | 55.32 | 63.94 |
[ | 151.26 | 182.23 | [ | 8.75 | 10.84 |
[ | 33.07 | 34.40 | 本文(BP神经网络模型) | 3.91 | 5.41 |
[ | 35.37 | 40.99 | 本文(GA-ELM模型) | 2.00 | 2.71 |
表 4 过冷沸腾阻力预测模型的预测性能
Table 4 Prediction performances of prediction models for subcooled boiling pressure drop
文献 | MAE/% | RMSE/% | 文献 | MAE/% | RMSE/% |
---|---|---|---|---|---|
[ | 103.19 | 150.78 | [ | 55.32 | 63.94 |
[ | 151.26 | 182.23 | [ | 8.75 | 10.84 |
[ | 33.07 | 34.40 | 本文(BP神经网络模型) | 3.91 | 5.41 |
[ | 35.37 | 40.99 | 本文(GA-ELM模型) | 2.00 | 2.71 |
1 | Devahdhanush V S, Mudawar I, Nahra H K, et al. Experimental heat transfer results and flow visualization of vertical upflow boiling in earth gravity with subcooled inlet conditions—in preparation for experiments onboard the International Space Station[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122603. |
2 | Mudawar I. Assessment of high-heat-flux thermal management schemes[J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(2): 122-141. |
3 | Ongena J, Ogawa Y. Nuclear fusion: status report and future prospects[J]. Energy Policy, 2016, 96: 770-778. |
4 | Yan J G, Bi Q C, Zhu G, et al. Critical heat flux of highly subcooled water flow boiling in circular tubes with and without internal twisted tapes under high mass fluxes[J]. International Journal of Heat and Mass Transfer, 2016, 95: 606-619. |
5 | Fang X D, Yuan Y L, Xu A Y, et al. Review of correlations for subcooled flow boiling heat transfer and assessment of their applicability to water[J]. Fusion Engineering and Design, 2017, 122: 52-63. |
6 | Parizad Benam B, Sadaghiani A K, Yağcı V, et al. Review on high heat flux flow boiling of refrigerants and water for electronics cooling[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121787. |
7 | Deng D X, Zeng L, Sun W. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121332. |
8 | Gugliermetti L, Caruso G, Saraceno L. Prediction of subcooled flow boiling pressure drops in small circular tubes[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1074-1090. |
9 | 杨宽, 阎昌琪, 曹夏昕. 自然循环窄矩形通道内过冷沸腾两相摩擦阻力特性[J]. 化工学报, 2020, 71(7): 3060-3070. |
Yang K, Yan C Q, Cao X X. Subcooled flow boiling resistance characteristics in narrow rectangular channel under natural circulation condition[J]. CIESC Journal, 2020, 71(7): 3060-3070. | |
10 | Sharifi S, Aligoodarz M R, Rahbari A. Thermohydraulic performance of Al2O3-water nanofluid during single-phase flow and two-phase subcooled flow boiling[J]. International Journal of Thermal Sciences, 2022, 179: 107605. |
11 | Sadaghiani A K, Koşar A. Numerical and experimental investigation on the effects of diameter and length on high mass flux subcooled flow boiling in horizontal microtubes[J]. International Journal of Heat and Mass Transfer, 2016, 92: 824-837. |
12 | Yan J G, Guo P C, Bi Q C, et al. Pressure drop for highly subcooled water flow boiling under high heat and mass fluxes[J]. Applied Thermal Engineering, 2017, 124: 1061-1074. |
13 | Zhang X, Feng W P, Zhang J, et al. Study on the subcooled boiling pressure drop for downward flow in a narrow rectangular channel[J]. Annals of Nuclear Energy, 2021, 154: 108111. |
14 | Ramesh B, Gedupudi S. On the prediction of pressure drop in subcooled flow boiling of water[J]. Applied Thermal Engineering, 2019, 155: 386-396. |
15 | Baburajan P K, Bisht G S, Gupta S K, et al. Measurement of subcooled boiling pressure drop and local heat transfer coefficient in horizontal tube under LPLF conditions[J]. Nuclear Engineering and Design, 2013, 255: 169-179. |
16 | Liang X, Xie Y Q, Day R, et al. A data driven deep neural network model for predicting boiling heat transfer in helical coils under high gravity[J]. International Journal of Heat and Mass Transfer, 2021, 166: 120743. |
17 | He Y C, Hu C Z, Li H Y, et al. Reliable predictions of bubble departure frequency in subcooled flow boiling: a machine learning-based approach[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123217. |
18 | 汪森林, 李照志, 邵应娟, 等. 超临界二氧化碳垂直管内传热恶化数值模拟研究[J]. 化工学报, 2022, 73(3): 1072-1082. |
Wang S L, Li Z Z, Shao Y J, et al. Numerical simulation on heat transfer deterioration of supercritical carbon dioxide in vertical tube[J]. CIESC Journal, 2022, 73(3): 1072-1082. | |
19 | Guo P C, Zheng S M, Yan J G, et al. Experimental investigation on heat transfer of subcooled flow boiling of water in mini channels under high heat fluxes[J]. Experimental Thermal and Fluid Science, 2023, 142: 110831. |
20 | 陈静妍, 徐荣吉, 吴青平, 等. 基于BP神经网络的不凝性气体对脉动热管传热影响的分析[J]. 化工进展, 2020, 39 (7): 2574-2582. |
Chen J Y, Xu R J, Wu Q P, et al. Heat transfer of non-condensable gas to pulsating heat pipe based on BP neural network model [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2574-2582. | |
21 | Kuang Y W, Han F, Sun L J, et al. Saturated hydrogen nucleate flow boiling heat transfer coefficients study based on artificial neural network[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121406. |
22 | Bard A, Qiu Y, Kharangate C R, et al. Consolidated modeling and prediction of heat transfer coefficients for saturated flow boiling in mini/micro-channels using machine learning methods[J]. Applied Thermal Engineering, 2022, 210: 118305. |
23 | O’Neill L E, Mudawar I. Review of two-phase flow instabilities in macro- and micro-channel systems[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119738. |
24 | Saisorn S, Suriyawong A, Srithumkhant P, et al. An investigation of horizontal and vertical flow boiling in a single channel with a confinement number beyond the threshold of micro-scale flow[J]. Physics of Fluids, 2021, 33(11): 113302. |
25 | Sun F, Xie G N, Li S L. An artificial-neural-network based prediction of heat transfer behaviors for in-tube supercritical CO2 flow[J]. Applied Soft Computing, 2021, 102: 107110. |
26 | 齐咏生, 樊佶, 刘利强, 等. 基于形态学分形和极限学习机的风电机组轴承故障诊断[J]. 太阳能学报, 2020, 41(6): 102-112. |
Qi Y S, Fan J, Liu L Q, et al. Fault diagnosis of wind turbine bearings based on morphological fractal and extreme learning machine[J]. Acta Energiae Solaris Sinica, 2020, 41(6): 102-112. | |
27 | Coleman H W, Steele W G. Engineering application of experimental uncertainty analysis[J]. AIAA Journal, 1995, 33(10): 888-1896. |
28 | Bergles A E, Rohsenow W M. The determination of forced-convection surface-boiling heat transfer[J]. Journal of Heat Transfer, 1964, 86(3): 365-372. |
29 | Owens W, Schrock V. Local pressure gradients for subcooled boiling of water in vertical tubes[R]. ASME Paper 60-WA-249, 1960. |
30 | Tarasova N V, Leontiev A I, Hlopushin V I, et al. Pressure drop of boiling subcooled water and steam-water mixture flowing in heated channels[C]//Proc. 3rd International Heat Transfer Conference. Chicago, 1966. |
31 | Hahne E, Spindler K, Skok H. A new pressure drop correlation for subcooled flow boiling of refrigerants[J]. International Journal of Heat and Mass Transfer, 1993, 36(17): 4267-4274. |
32 | Tong W, Bergles A E, Jensen M K. Pressure drop with highly subcooled flow boiling in small-diameter tubes[J]. Experimental Thermal and Fluid Science, 1997, 15 (3): 202-212. |
33 | Huang G, Huang G B, Song S, et al. Trends in extreme learning machines: a review[J]. Neural Networks, 2015, 61: 32-48. |
34 | 崔江, 唐军祥, 张卓然, 等. 基于极限学习机的航空发电机旋转整流器快速故障分类方法研究[J]. 中国电机工程学报, 2018, 38(8): 2458-2466, 2555. |
Cui J, Tang J X, Zhang Z R, et al. Fast fault classification method research of aircraft generator rotating rectifier based on extreme learning machine[J]. Proceedings of the CSEE, 2018, 38(8): 2458-2466, 2555. | |
35 | 颜建国, 郑书闽, 郭鹏程, 等. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报, 2021, 72(9): 4649-4657. |
Yan J G, Zheng S M, Guo P C, et al. Prediction of heat transfer characteristics for supercritical CO2 based on GA-BP neural network[J]. CIESC Journal, 2021, 72(9): 4649-4657. | |
36 | Guo X Y, Zhang L, Xing Y X. Study on analytical noise propagation in convolutional neural network methods used in computed tomography imaging[J]. Nuclear Science and Techniques, 2022, 33(6): 116-129. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[5] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[8] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[11] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[12] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[13] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[14] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[15] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||