1 |
Holder G D, Angert P F, John V T, et al. A thermodynamic evaluation of thermal recovery of gas from hydrates in the Earth [J]. Journal of Petroleum Technology, 1982, 34(5): 1127-1132.
|
2 |
Meirmanov A M, Crowley A, Niezgodka M. The Stefan Problem[M]. Berlin: Walter de Gruyter, 2011:24-32.
|
3 |
Li M C, Fan S S, Su Y L, et al. Mathematical models of the heat-water dissociation of natural gas hydrates considering a moving Stefan boundary[J]. Energy, 2015, 90:202-207.
|
4 |
李刚,李小森. 单井热吞吐开采南海神狐海域天然气水合物数值模拟[J].化工学报, 2011, 62(2): 458-468.
|
|
Li G, Li X S. Numerical simulation for gas production from hydrate accumulated in Shenhu Area, South China Sea, using huff and puff method[J]. CIESC Journal, 2011, 62(2): 458-468.
|
5 |
Douglas J. A uniqueness theorem for the solution of a Stefan problem[J]. Proceedings of the American Mathematical Society, 1957, 8(2): 402-408.
|
6 |
Cannon J, Hill C. Existence, uniqueness, stability, and monotone dependence in a Stefan problem for the heat equation[J]. Indiana University Mathematics Journal, 1967, 17(1):1-19.
|
7 |
Kawarada H. Stefan-type free boundary problems for heat equations[J]. Publications of the Research Institute for Mathematical Sciences, 1973, 9(3):517-533.
|
8 |
Friedman A. The Stefan problem for a hyperbolic heat equation[J]. Journal of Mathematical Analysis and Applications, 1989, 138(1):249-279.
|
9 |
Athanasopoulos I, Caffarelli L A, Salsa S. Phase transition problems of parabolic type: flat free boundaries are smooth[J]. Communications on Pure and Applied Mathematics, 1998, 51(1): 77-112.
|
10 |
Prüss J, Saal J, Simonett G. Existence of analytic solutions for the classical Stefan problem[J]. Mathematische Annalen, 2007, 338(3): 703-755.
|
11 |
Hadžić M, Shkoller S. Well-posedness for the classical Stefan problem and the zero surface tension limit[J]. Archive for Rational Mechanics and Analysis, 2017, 223(1): 213-264.
|
12 |
闫德宝. 具温度边界条件的单相Stefan问题解的存在唯一性[J]. 中央民族大学学报(自然科学版), 2012, 21(2): 36-40.
|
|
Yan D B. Existence and uniqueness of global solutions for one-phase Stefan problem with temperature boundary conditions[J]. Journal of Minzu University of China (Natural Sciences Edition), 2012, 21(2): 36-40.
|
13 |
Selim M S, Sloan E D. Heat and mass transfer during the dissociation of hydrates in porous media[J]. AIChE Journal, 1989, 35(6): 1049-1052.
|
14 |
Šarler B. Stefan’s work on solid-liquid phase changes[J]. Engineering Analysis With Boundary Elements, 1995, 16(2):83-92.
|
15 |
Tsimpanogiannis I N, Lichtner P C. Parametric study of methane hydrate dissociation in oceanic sediments driven by thermal stimulation [J]. Journal of Petroleum Science and Engineering, 2007, 56(1/2/3):165-175.
|
16 |
Li M C, Fan S S, Su Y L, et al. The Stefan moving boundary models for the heat-dissociation hydrate with a density difference [J]. Energy, 2018, 160:1124-1132.
|
17 |
李明川, 樊栓狮, 徐赋海, 等. 天然气水合物热分解Stefan相变数学模拟研究[J].化工学报, 2021,72(6):3252-3260.
|
|
Li M C, Fan S S, Xu F H, et al. Mathematical modeling of Stefan phase change for thermal dissociation of natural gas hydrate[J]. CIESC Journal, 2021, 72(6):3252-3260.
|
18 |
Hann D W, Özisik M N. Heat Conduction[M]. 3rd ed. New York: John Wiley & Sons Inc., 2012: 64-81.
|
19 |
Callen H B. Thermodynamics and an Introduction to Thermostatistics[M]. 2nd ed. New York: John Wiley & Sons Inc., 1985:43-56.
|
20 |
Kentzer C P. Quasilinear form of Rankine-Hugoniot jump conditions[J]. AIAA Journal, 1986, 24(4): 691-693.
|
21 |
Fasano A, Primicerio M. General free-boundary problems for the heat equation, Ⅰ[J]. Journal of Mathematical Analysis and Applications, 1977, 57(3): 694-723.
|
22 |
Fasano A, Primicerio M. General free-boundary problems for the heat equation, Ⅱ[J]. Journal of Mathematical Analysis and Applications, 1977, 58(1): 202-231.
|
23 |
Fasano A, Primicerio M. General free-boundary problems for the heat equation, Ⅲ[J]. Journal of Mathematical Analysis and Applications, 1977, 59(1): 1-14.
|
24 |
唐良广, 李刚, 冯自平, 等. 热力法开采天然气水合物的数学模拟[J]. 天然气工业, 2006, 26(10): 105-107, 182.
|
|
Tang L G, Li G, Feng Z P, et al. Mathematic modeling on thermal recovery of natural gas hydrate[J]. Natural Gas Industry, 2006, 26(10): 105-107, 182.
|
25 |
Briozzo A C, Natale M F. Nonlinear Stefan problem with convective boundary condition in Storm’s materials[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2016, 67(2): 19.
|
26 |
Cannon J R, Primicerio M. Remarks on the one-phase Stefan problem for the heat equation with the flux prescribed on the fixed boundary[J]. Journal of Mathematical Analysis and Applications, 1971, 35(2): 361-373.
|
27 |
Hadžić M, Navarro G, Shkoller S. Local well-posedness and global stability of the two-phase Stefan problem[J]. SIAM Journal on Mathematical Analysis, 2017, 49(6): 4942-5006.
|
28 |
Sauvigny F, Heinz E. Partial Differential Equations [M]. 2nd ed. London: Springer, 2012:31-58.
|
29 |
Bollati J, Natale M F, Semitiel J A, et al. Existence and uniqueness of solution for two one-phase Stefan problems with variable thermal coefficients[J]. Nonlinear Analysis: Real World Applications, 2020, 51: 103001.
|
30 |
Cheng T F. Numerical analysis of nonlinear multiphase Stefan problems[J]. Computers & Structures, 2000, 75(2): 225-233.
|
31 |
Soh C W. Symmetry breaking of systems of linear second-order ordinary differential equations with constant coefficients[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(2): 139-143.
|
32 |
Paterson S. Propagation of a boundary of fusion[J]. Proceedings of the Glasgow Mathematical Association, 1952, 1(1): 42-47.
|