化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1735-1745.DOI: 10.11949/0438-1157.20221646
收稿日期:
2022-12-29
修回日期:
2023-03-14
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
时国华,赵玺灵
作者简介:
时国华(1980—),男,博士,副教授,lucksgh@126.com
基金资助:
Guohua SHI1,2(), Linshen HE1, Xiling ZHAO3(), Shigang ZHANG4
Received:
2022-12-29
Revised:
2023-03-14
Online:
2023-04-05
Published:
2023-06-02
Contact:
Guohua SHI, Xiling ZHAO
摘要:
喷淋塔喷淋低温水可回收烟气余热和净化烟气。以喷淋塔为研究对象,建立喷淋塔内气-液热质交换、颗粒物异质凝结增长与脱除模型,探究余热回收喷淋塔内烟气颗粒物脱除机理,研究不同工况下颗粒物脱除特性。结果表明:当烟气入口温度50℃、入口相对湿度100%、水气比2 L/m³、喷淋水温20℃、喷淋水滴粒径550 μm时,在喷淋塔下半部区域,水滴主要靠热泳与扩散泳捕集亚微米级颗粒物;随着水蒸气在亚微米级颗粒物表面凝结,在喷淋塔上部区域,惯性碰撞为水滴捕集亚微米级颗粒物的主要机制。提高水气比、降低喷淋水温、减小液滴粒径、增大气液两相温差及水汽饱和度均可提高喷淋塔内颗粒物脱除效率,其中水气比为2.5 L/m3,喷淋水温为10~15℃,可实现较好的颗粒物脱除效果。
中图分类号:
时国华, 何林珅, 赵玺灵, 张世钢. 余热回收喷淋塔的烟气颗粒物脱除特性研究[J]. 化工学报, 2023, 74(4): 1735-1745.
Guohua SHI, Linshen HE, Xiling ZHAO, Shigang ZHANG. Study of removal characteristics of particulate matters within flue gas by spray tower for waste-heat recovery[J]. CIESC Journal, 2023, 74(4): 1735-1745.
工况条件 | 颗粒物脱除效率 | ||||
---|---|---|---|---|---|
喷淋水温/℃ | 烟气入口温度/℃ | 水气比/(L/m³) | 实验值/% | 计算值/% | 偏差/% |
10 | 48.0 | 1 | 85.2 | 81.5 | 4.3 |
10 | 48.2 | 1.5 | 98.5 | 95.4 | 3.1 |
10 | 48.4 | 2 | 98.7 | 97.2 | 1.5 |
10 | 49.2 | 3 | 99.2 | 99.1 | 0.1 |
20 | 48.2 | 1 | 76.6 | 73.6 | 3.9 |
20 | 47.8 | 1.5 | 89.2 | 86.6 | 2.9 |
20 | 47.7 | 2 | 97.0 | 93.6 | 3.5 |
20 | 47.8 | 3 | 98.1 | 97.2 | 0.9 |
表1 模拟计算结果与实验数据对比
Table 1 Comparison of simulation results and experimental data
工况条件 | 颗粒物脱除效率 | ||||
---|---|---|---|---|---|
喷淋水温/℃ | 烟气入口温度/℃ | 水气比/(L/m³) | 实验值/% | 计算值/% | 偏差/% |
10 | 48.0 | 1 | 85.2 | 81.5 | 4.3 |
10 | 48.2 | 1.5 | 98.5 | 95.4 | 3.1 |
10 | 48.4 | 2 | 98.7 | 97.2 | 1.5 |
10 | 49.2 | 3 | 99.2 | 99.1 | 0.1 |
20 | 48.2 | 1 | 76.6 | 73.6 | 3.9 |
20 | 47.8 | 1.5 | 89.2 | 86.6 | 2.9 |
20 | 47.7 | 2 | 97.0 | 93.6 | 3.5 |
20 | 47.8 | 3 | 98.1 | 97.2 | 0.9 |
参数 | 数值 |
---|---|
烟气参数 | |
烟气入口温度/℃ | 50 |
烟气入口相对湿度/% | 100 |
塔内烟气流速/(m/s) | 1 |
喷淋参数 | |
喷淋水温/℃ | 20 |
喷淋量/(t/h) | 22.6 |
水气比/(L/m³) | 2 |
喷淋水滴Sauter平均粒径/μm | 550 |
喷淋塔参数 | |
喷淋塔半径/m | 1 |
喷淋塔有效喷淋高度/m | 4 |
喷嘴数/个 | 45 |
表2 数值模拟所采用的参数取值
Table 2 Values of parameters used in numerical simulation
参数 | 数值 |
---|---|
烟气参数 | |
烟气入口温度/℃ | 50 |
烟气入口相对湿度/% | 100 |
塔内烟气流速/(m/s) | 1 |
喷淋参数 | |
喷淋水温/℃ | 20 |
喷淋量/(t/h) | 22.6 |
水气比/(L/m³) | 2 |
喷淋水滴Sauter平均粒径/μm | 550 |
喷淋塔参数 | |
喷淋塔半径/m | 1 |
喷淋塔有效喷淋高度/m | 4 |
喷嘴数/个 | 45 |
1 | Wen C, Xu M H, Zhou K, et al. The melting potential of various ash components generated from coal combustion: indicated by the circularity of individual particles using CCSEM technology[J]. Fuel Processing Technology, 2015, 133: 128-136. |
2 | Huang Q, Li S Q, Li G D, et al. Mechanisms on the size partitioning of sodium in particulate matter from pulverized coal combustion[J]. Combustion and Flame, 2017, 182: 313-323. |
3 | 林秋寒, 陈姝芮, 屠征波, 等. 我国北方冬季灰霾主要有机单颗粒类型及耐热性[J]. 地球化学, 2022, 51(2): 243-250. |
Lin Q H, Chen S R, Tu Z B, et al. Morphology and heat resistance of the major organic particles in winter hazes of Northern China[J]. Geochimica, 2022, 51(2): 243-250. | |
4 | Bologa A, Paur H R, Seifert H, et al. Novel wet electrostatic precipitator for collection of fine aerosol[J]. Journal of Electrostatics, 2009, 67(2/3): 150-153. |
5 | 陈奎续. 超净电袋复合除尘技术的研究应用进展[J]. 中国电力, 2017, 50(3): 22-27. |
Chen K X. Research and application progress of ultra-clean electrostatic-fabric integrated precipitator technology[J]. Electric Power, 2017, 50(3): 22-27. | |
6 | 雒飞, 胡斌, 吴昊, 等. 湿式电除尘对PM2.5/SO3酸雾脱除特性的试验研究[J]. 东南大学学报(自然科学版), 2017, 47(1): 91-97. |
Luo F, Hu B, Wu H, et al. Experimental study on removal properties of PM2.5 and sulfuric acid mist by wet electrostatic precipitator[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(1): 91-97. | |
7 | 徐明厚, 王文煜, 温昶, 等. 燃煤电厂细微颗粒物脱除技术研究新进展[J]. 中国电机工程学报, 2019, 39(22): 6627-6640. |
Xu M H, Wang W Y, Wen C, et al. Research development of precipitation technology to accomplish the ultra-low emission from coal-fired power plants[J]. Proceedings of the CSEE, 2019, 39(22): 6627-6640. | |
8 | Zhou X, Liu H, Fu L, et al. Experimental study of natural gas combustion flue gas waste heat recovery system based on direct contact heat transfer and absorption heat pump[C]//Proceedings of ASME 2013 7th International Conference on Energy Sustainability Collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. Minneapolis, Minnesota, USA, 2013. |
9 | 魏茂林, 付林, 赵玺灵, 等. 燃煤烟气余热回收与减排一体化系统应用研究[J]. 工程热物理学报, 2017, 38(6): 1157-1165. |
Wei M L, Fu L, Zhao X L, et al. Coal-fired boiler flue gas heat recovery system and its performance study[J]. Journal of Engineering Thermophysics, 2017, 38(6): 1157-1165. | |
10 | 王静贻, 付林, 赵金姊, 等. 用于燃煤锅炉烟气余热回收的顺流烟气喷淋塔的实验与理论研究[J]. 工程热物理学报, 2018, 39(5): 1070-1077. |
Wang J Y, Fu L, Zhao J Z, et al. Theoretical and experimental studies of parallel-flow spray tower for surplus-heat recovery system of flue gas in coal-fired boilers[J]. Journal of Engineering Thermophysics, 2018, 39(5): 1070-1077. | |
11 | Calvert S, Jhaveri N C. Flux force/condensation scrubbing[J]. Journal of the Air Pollution Control Association, 1974, 24(10): 946-951. |
12 | Calvert S, Gandhi S, Harmon D L, et al. FF/C scrubber demonstration on a secondary metals recovery furnace[J]. Journal of the Air Pollution Control Association, 1977, 27(11): 1076-1080. |
13 | Johannessen T, Christensen J A, Simonsen O, et al. The dynamics of aerosols in condensational scrubbers[J]. Chemical Engineering Science, 1997, 52(15): 2541-2556. |
14 | Heidenreich S, Vogt U, Büttner H, et al. A novel process to separate submicron particles from gases—a cascade of packed columns[J]. Chemical Engineering Science, 2000, 55(15): 2895-2905. |
15 | Feng Y P, Li Y Z, Cui L, et al. Cold condensing scrubbing method for fine particle reduction from saturated flue gas[J]. Energy, 2019, 171: 1193-1205. |
16 | Luo X S, Fan Y, Qin F H, et al. A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle[J]. The Journal of Chemical Physics, 2014, 140(2): 024708. |
17 | 凡凤仙, 杨林军, 袁竹林, 等. 喷淋塔内可吸入颗粒物的脱除与凝结增长特性[J]. 化工学报, 2010, 61(10): 2708-2713. |
Fan F X, Yang L J, Yuan Z L, et al. Removal and condensation growth of inhalable particles in spray scrubber[J]. CIESC Journal, 2010, 61(10): 2708-2713. | |
18 | 王健, 潘伶, 王帅, 等. 工程相变凝并器内超细颗粒长大与脱除性能分析[J]. 化工学报, 2020, 71(11): 5090-5098. |
Wang J, Pan L, Wang S, et al. Analysis of ultrafine particles growth and removal in phase-transition agglomerator for engineering[J]. CIESC Journal, 2020, 71(11): 5090-5098. | |
19 | Mohan B R, Jain R K, Meikap B C. Comprehensive analysis for prediction of dust removal efficiency using twin-fluid atomization in a spray scrubber[J]. Separation and Purification Technology, 2008, 63(2): 269-277. |
20 | Jung C H, Lee K W. Filtration of fine particles by multiple liquid droplet and gas bubble systems[J]. Aerosol Science and Technology, 1998, 29(5): 389-401. |
21 | Carotenuto C, Di Natale F, Lancia A. Wet electrostatic scrubbers for the abatement of submicronic particulate[J]. Chemical Engineering Journal, 2010, 165(1): 35-45. |
22 | Davenport H M, Peters L K. Field studies of atmospheric particulate concentration changes during precipitation[J]. Atmospheric Environment, 1978, 12(5): 997-1008. |
23 | 王翱, 宋蔷, 姚强. 脱硫塔内单液滴捕集颗粒物的数值模拟[J]. 工程热物理学报, 2014, 35(9): 1889-1893. |
Wang A, Song Q, Yao Q. Numerical simulation of single droplet capturing particles in the WFGD[J]. Journal of Engineering Thermophysics, 2014, 35(9): 1889-1893. | |
24 | Pilat M J, Prem A. Calculated particle collection efficiencies of single droplets including inertial impaction, Brownian diffusion, diffusiophoresis and thermophoresis[J]. Atmospheric Environment, 1976, 10(1): 13-19. |
25 | Bae S Y, Jung C H, Kim Y P. Relative contributions of individual phoretic effect in the below-cloud scavenging process[J]. Journal of Aerosol Science, 2009, 40(7): 621-632. |
26 | 张迪. 液滴曳力数值计算方法研究及在干燥器中的应用[D]. 北京: 清华大学, 2016: 70-71. |
Zhang D. Research on the numerical method to calculate the droplet’s drag force and its application on the steam drier[D]. Beijing: Tsinghua University, 2016: 70-71. | |
27 | Bergman T L, Bergman T L, Incropera F P, et al. Fundamentals of Heat and Mass Transfer[M]. 7th ed. New York: John Wiley & Sons, 2011: 876-890. |
28 | 盛裴轩, 毛节泰, 李建国. 大气物理学[M]. 2版. 北京: 北京大学出版社, 2013: 310-324. |
Sheng P X, Mao J T, Li J G. Atmospheric Physics[M]. 2nd ed. Beijing: Peking University Press, 2013: 310-324. | |
29 | 赵海波. 颗粒群平衡模拟的随机模型与燃煤可吸入颗粒物高效脱除的研究[D]. 武汉: 华中科技大学, 2007: 175-180. |
Zhao H B. Stochastic solution of population balance modeling and the research on high-efficiency removal of particulate matter from coal combustion[D]. Wuhan: Huazhong University of Science and Technology, 2007: 175-180. | |
30 | Yao S, Cheng S Y, Li J B, et al. Effect of wet flue gas desulfurization (WFGD) on fine particle (PM2.5) emission from coal-fired boilers[J]. Journal of Environmental Sciences, 2019, 77: 32-42. |
31 | 王翔, 王述浩, 段璐, 等. 相变凝聚器内湿烟气核化特性模拟研究[J]. 中国电机工程学报, 2020, 40(2): 574-583. |
Wang X, Wang S H, Duan L, et al. Nucleation characteristics simulation of wet flue gas in phase-change agglomerator[J]. Proceedings of the CSEE, 2020, 40(2): 574-583. |
[1] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[2] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[3] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[4] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[5] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[6] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[7] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
[8] | 李沐紫, 贾国伟, 赵砚珑, 张鑫, 李建荣. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379. |
[9] | 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478. |
[10] | 鲁军辉, 李俊明. H2O-CO2、H2O-N2、H2O-He水平管外自然对流凝结换热特性研究[J]. 化工学报, 2022, 73(9): 3870-3879. |
[11] | 王佳铭, 阮雪华, 贺高红. 面向不同工业二氧化碳分离体系的膜材料研究进展[J]. 化工学报, 2022, 73(8): 3417-3432. |
[12] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
[13] | 李雯, 兰忠, 强伟丽, 任文芝, 杜宾港, 马学虎. 蒸汽冷凝近壁过渡区团簇演化特性[J]. 化工学报, 2022, 73(7): 2865-2873. |
[14] | 赵庆杰, 胡晓红, 张超, 凡凤仙. 蒸汽在含有不可溶核和可溶无机盐的细颗粒物表面的核化特性[J]. 化工学报, 2022, 73(7): 3251-3261. |
[15] | 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||