化工学报 ›› 2023, Vol. 74 ›› Issue (6): 2264-2280.DOI: 10.11949/0438-1157.20230048

• 综述与专论 • 上一篇    下一篇

Ru基氮还原电催化剂性能调控策略

张谭1,2,3(), 刘光1(), 李晋平1,2,3(), 孙予罕2,4   

  1. 1.太原理工大学化学工程与技术学院,气体能源高效清洁利用山西省重点实验室,山西 太原 030024
    2.怀柔实验室山西研究院,山西 太原 030000
    3.太原理工大学省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
    4.上海科技大学2060研究院,上海 201210
  • 收稿日期:2023-01-19 修回日期:2023-06-01 出版日期:2023-06-05 发布日期:2023-07-27
  • 通讯作者: 刘光,李晋平
  • 作者简介:张谭(1995—),男,博士研究生,zhangtan1206@126.com
  • 基金资助:
    国家自然科学基金项目(22075196)

Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts

Tan ZHANG1,2,3(), Guang LIU1(), Jinping LI1,2,3(), Yuhan SUN2,4   

  1. 1.Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.Shanxi Research Institute of Huairou Laboratory, Taiyuan 030000, Shanxi, China
    3.State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    4.2060 Research Institute, Shanghai Tech University, Shanghai 201210, China
  • Received:2023-01-19 Revised:2023-06-01 Online:2023-06-05 Published:2023-07-27
  • Contact: Guang LIU, Jinping LI

摘要:

氨是重要的化学品以及理想的能源载体,人工合成氨主要来源于高能耗的Haber-Bosch(H-B)工艺。相比而言,电催化合成氨以N2和H2O为原料,实现了温和条件下产氨。Ru基催化剂在氮还原(NRR)过程中表现出优异的催化活性,但由于较为稀缺限制了其发展。基于此,首先概述了NRR的反应机制并对现有的Ru基合成氨电催化剂进行了系统的介绍;详细分析了性能提升策略(结构调控、表/界面工程、缺陷工程),如何调控活性组分或电子结构,进而提升催化剂的性能;最后分析了Ru基催化剂所面临的挑战。旨在通过Ru基催化剂性能提升策略,实现贵金属Ru的高效利用,并为其他NRR催化剂的开发设计提供指导。

关键词: 催化剂, 催化, 电化学, 合成氨, 氮还原反应, 性能提升策略

Abstract:

Ammonia is an important chemical and ideal energy vector. Artificial ammonia synthesis through the Haber-Bosch (H-B) process is energy-intensive. In contrast, ammonia is generated from N2 and H2O under mild conditions through the electrocatalytic ammonia synthesis. Ru-based catalyst performs superior activities during the nitrogen reduction reaction (NRR), which has attracted extensive attention. However, its development is limited owing to its scarcity. Therefore, the NRR reaction mechanisms are briefly outlined and a systematic summary of Ru-based electrocatalysts for ammonia synthesis is introduced firstly. Subsequently, it is methodically discussed how the strategies for performance enhancement (structural optimization, surface/interface engineering, defect engineering) of catalysts regulate the active sites or electronic structure and then promote the activity of catalysts. Finally, the remaining challenges of Ru-based electrocatalysts in future are highlighted. This review aims to achieve the usage of the Ru metal effectively through the performance-improving strategies of Ru-based electrocatalysts and provides the theory guidance for the design of the other NRR catalysts.

Key words: catalyst, catalysis, electrochemistry, ammonia synthesis, nitrogen reduction reaction, performance-improving strategies

中图分类号: