化工学报 ›› 2023, Vol. 74 ›› Issue (7): 2848-2857.DOI: 10.11949/0438-1157.20230377
收稿日期:
2023-04-17
修回日期:
2023-07-01
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
林梅
作者简介:
黄可欣(1999—),女,硕士研究生,530093537@qq.com
基金资助:
Kexin HUANG(), Tong LI, Anqi LI, Mei LIN(
)
Received:
2023-04-17
Revised:
2023-07-01
Online:
2023-07-05
Published:
2023-08-31
Contact:
Mei LIN
摘要:
采用动态模态分解方法对加装旋转叶轮T型通道内热混合数值模拟获得的压力场和涡量场进行了研究。通过对比不同叶片数(2~4片)的动态模态分解结果,获得了偏转射流条件(MR=0.49)下,主支管管径比为2的T型通道在转速为20 r/min时流场相干结构的特征模态。通过观察压力分布特征模态的空间结构,发现相干结构主要出现在叶轮内部区域;涡量场特征模态的空间结构主要分布在叶尖处,同时在管壁附近也出现了少量条状相干结构。主导压力场和涡量场的2阶~4阶模态频率相等,对应叶片通过频率的1倍频、2倍频和3倍频。二者的第5阶模态频率随着叶片数的增加而趋于相等。此外,当模态频率为叶片通过频率倍频时,在叶片附近出现了“辐射状干涉条纹”。研究结果可为T型通道中的流动控制提供理论指导。
中图分类号:
黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857.
Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller[J]. CIESC Journal, 2023, 74(7): 2848-2857.
进口 | 速度/(m/s) | 温度/K | Re |
---|---|---|---|
主管 | 0.15 | 343.48 | 6578 |
支管 | 0.30 | 296.78 | 13424 |
表1 计算边界条件
Table 1 Computational boundary condition
进口 | 速度/(m/s) | 温度/K | Re |
---|---|---|---|
主管 | 0.15 | 343.48 | 6578 |
支管 | 0.30 | 296.78 | 13424 |
叶片数 | 物理量 | 模态频率/Hz | |||
---|---|---|---|---|---|
Mode 2 | Mode 3 | Mode 4 | Mode 5 | ||
Np=2 | 压力 | 0.7 | 1.3 | 2.0 | 19.8 |
涡量 | 0.7 | 1.3 | 2.0 | 4.0 | |
速度 | 0.7 | 0.9 | 3.9 | 5.5 | |
温度 | 0.7 | 5.2 | 6.3 | 13.0 | |
Np=3 | 压力 | 1.0 | 2.0 | 3.0 | 5.0 |
涡量 | 1.0 | 2.0 | 3.0 | 5.0 | |
速度 | 1.0 | 5.9 | 6.7 | 9.3 | |
温度 | 1.0 | 6.2 | 8.8 | 14.2 | |
Np=4 | 压力 | 1.3 | 2.6 | 4.0 | 5.3 |
涡量 | 1.3 | 2.6 | 4.0 | 5.3 | |
速度 | 1.3 | 2.7 | 4.0 | 6.4 | |
温度 | 1.3 | 2.7 | 4.0 | 8.5 |
表2 流场参数模态频率
Table 2 DMD mode frequency
叶片数 | 物理量 | 模态频率/Hz | |||
---|---|---|---|---|---|
Mode 2 | Mode 3 | Mode 4 | Mode 5 | ||
Np=2 | 压力 | 0.7 | 1.3 | 2.0 | 19.8 |
涡量 | 0.7 | 1.3 | 2.0 | 4.0 | |
速度 | 0.7 | 0.9 | 3.9 | 5.5 | |
温度 | 0.7 | 5.2 | 6.3 | 13.0 | |
Np=3 | 压力 | 1.0 | 2.0 | 3.0 | 5.0 |
涡量 | 1.0 | 2.0 | 3.0 | 5.0 | |
速度 | 1.0 | 5.9 | 6.7 | 9.3 | |
温度 | 1.0 | 6.2 | 8.8 | 14.2 | |
Np=4 | 压力 | 1.3 | 2.6 | 4.0 | 5.3 |
涡量 | 1.3 | 2.6 | 4.0 | 5.3 | |
速度 | 1.3 | 2.7 | 4.0 | 6.4 | |
温度 | 1.3 | 2.7 | 4.0 | 8.5 |
1 | Hosseini S M, Yuki K, Hashizume H. Classification of turbulent jets in a T-junction area with a 90-deg bend upstream[J]. International Journal of Heat and Mass Transfer, 2008, 51(9/10): 2444-2454. |
2 | Lin C H, Ferng Y M. Investigating thermal mixing and reverse flow characteristics in a T-junction using CFD methodology[J]. Applied Thermal Engineering, 2016, 102: 733-741. |
3 | Miyoshi K, Utanohara Y, Kamaya M. Penetration flow into a branch pipe causing thermal fatigue at a mixing tee[J]. Nuclear Engineering and Design, 2020, 360: 110496. |
4 | Hekmat M H, Saharkhiz S, Izadpanah E. Investigation on the thermal mixing enhancement in a T-junction pipe[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(7): 276. |
5 | Kuhn S, Braillard O, Ničeno B, et al. Computational study of conjugate heat transfer in T-junctions[J]. Nuclear Engineering and Design, 2010, 240(6): 1548-1557. |
6 | Nan Z Z, Gu M Z, Li Y R, et al. Effects of the incident angle of branch pipe on the thermal mixing of impinging jets in T-junctions[J]. International Journal of Heat and Mass Transfer, 2022, 185: 122433. |
7 | Lampunio L, Duan Y, Eaton M D. The effect of inlet flow conditions upon thermal mixing and conjugate heat transfer within the wall of a T-Junction[J]. Nuclear Engineering and Design, 2021, 385: 111484. |
8 | Su B, Zhu Z L, Ke H B, et al. Large eddy simulation of flow and mixing characteristics in a T-junction under inflow pulsation[J]. Applied Thermal Engineering, 2020, 181: 115924. |
9 | Su B, Zhu Z L, Wang X Y, et al. Effect of temperature difference on the thermal mixing phenomenon in a T-junction under inflow pulsation[J]. Nuclear Engineering and Design, 2020, 363: 110611. |
10 | 张航, 张巍, 李伟锋, 等. T型反应器内流动、混合及界面反应特征[J]. 化工学报, 2021, 72(10): 5064-5073. |
Zhang H, Zhang W, Li W F, et al. Characteristics of flow, mixing and interfacial reaction in T-jet reactor[J]. CIESC Journal, 2021, 72(10): 5064-5073. | |
11 | Wu H L, Peng X F, Chen T K. Influence of sleeve tube on the flow and heat transfer behavior at a T-junction[J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2637-2644. |
12 | Lu T, Jiang P X, Guo Z J, et al. Large-eddy simulations (LES) of temperature fluctuations in a mixing tee with/without a porous medium[J]. International Journal of Heat and Mass Transfer, 2010, 53(21/22): 4458-4466. |
13 | Wang Y W, Lu T, Wang K S. Effect of particle diameter of porous media on flow and heat transfer in a mixing tee[J]. Annals of Nuclear Energy, 2012, 49: 122-130. |
14 | 王永伟. 多孔介质T型管道混合区流动与传热机理和实验研究[D]. 北京: 北京化工大学, 2012. |
Wang Y W. Mechanism and experimental study on flow and heat transfer in mixing zone of porous medium T-shaped pipe[D]. Beijing: Beijing University of Chemical Technology, 2012. | |
15 | Huang K X, Su B, Li T, et al. Numerical simulation of the mixing behaviour of hot and cold fluids in the rectangular T-junction with/without an impeller[J]. Applied Thermal Engineering, 2022, 204: 117942. |
16 | 王芳, 贾胜坤, 张会书, 等. 基于实验数据的湍流扩散POD模态分析[J]. 化工学报, 2021, 72(9): 4531-4543. |
Wang F, Jia S K, Zhang H S, et al. POD modal analysis of turbulent diffusion based on experimental data[J]. CIESC Journal, 2021, 72(9): 4531-4543. | |
17 | Schmid P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5-28. |
18 | Schmid P J, Li L, Juniper M P, et al. Applications of the dynamic mode decomposition[J]. Theoretical and Computational Fluid Dynamics, 2011, 25(1): 249-259. |
19 | Sarkar S, Ganguly S, Dalal A, et al. Mixed convective flow stability of nanofluids past a square cylinder by dynamic mode decomposition[J]. International Journal of Heat and Fluid Flow, 2013, 44: 624-634. |
20 | Le Clainche S, Vega J M, Soria J. Higher order dynamic mode decomposition of noisy experimental data: the flow structure of a zero-net-mass-flux jet[J]. Experimental Thermal and Fluid Science, 2017, 88: 336-353. |
21 | Menon K, Mittal R. Dynamic mode decomposition based analysis of flow over a sinusoidally pitching airfoil[J]. Journal of Fluids and Structures, 2020, 94: 102886. |
22 | Liu Q, Luo Z B, Deng X, et al. Numerical investigation on flow field characteristics of dual synthetic cold/hot jets using POD and DMD methods[J]. Chinese Journal of Aeronautics, 2020, 33(1): 73-87. |
23 | Wynn A, Pearson D S, Ganapathisubramani B, et al. Optimal mode decomposition for unsteady flows[J]. Journal of Fluid Mechanics, 2013, 733: 473-503. |
24 | Sampath R, Chakravarthy S R. Proper orthogonal and dynamic mode decompositions of time-resolved PIV of confined backward-facing step flow[J]. Experiments in Fluids, 2014, 55(9): 1792. |
25 | Kalghatgi P, Acharya S. Modal analysis of inclined film cooling jet flow[J]. Journal of Turbomachinery, 2014, 136(8): 081007. |
26 | Roy S, Yi T, Jiang N, et al. Dynamics of robust structures in turbulent swirling reacting flows[J]. Journal of Fluid Mechanics, 2017, 816: 554-585. |
27 | Huang Z W, Li T, Huang K X, et al. Predictions of flow and temperature fields in a T-junction based on dynamic mode decomposition and deep learning[J]. Energy, 2022, 261: 125228. |
28 | Huang K X, Li T, Su B, et al. Dynamic mode decomposition of mixing characteristics in a T-junction with a rotation impeller[J]. Physics of Fluids, 2022, 34(9): 095127. |
29 | Addad Y, Gaitonde U, Laurence D, et al. Optimal unstructured meshing for large eddy simulations[M]//Meyers J, Geurts B J, Sagaut P. Quality and Reliability of Large-Eddy Simulations. Dordrecht: Springer, 2008: 93-103. |
30 | Lobanoff V S, Ross R R. Centrifugal Pumps: Design and Application[M]. 2nd ed. Amsterdam: Elsevier, 1992. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[12] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[13] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[14] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[15] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 620
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 209
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||