化工学报 ›› 2023, Vol. 74 ›› Issue (12): 4904-4913.DOI: 10.11949/0438-1157.20231034
收稿日期:
2023-10-07
修回日期:
2023-11-28
出版日期:
2023-12-25
发布日期:
2024-02-19
通讯作者:
王蕊欣,焦纬洲
作者简介:
柴亚婷(1999—),女,硕士研究生,2594306003@qq.com
基金资助:
Yating CHAI(), Jiawei LU, Ruixin WANG(
), Weizhou JIAO(
)
Received:
2023-10-07
Revised:
2023-11-28
Online:
2023-12-25
Published:
2024-02-19
Contact:
Ruixin WANG, Weizhou JIAO
摘要:
电催化分解水是当今最有成效的产氢方法之一,而析氧反应是水分解的决速步,但其动力学缓慢,因此,开发能有效加速析氧反应的电催化剂成为研究者关注的焦点。首先,选择以碳纸(CP)为自支撑基底,原位水热生长氧化锌(ZnO)纳米针,后进一步通过水热在其上生长NiCoMo的层状氢氧化物(NiCoMo-LDH)纳米片,制得NiCoMo-LDH/ZnO/CP。最后,以双氰胺(DCDA)作为碳源和氮源,与NiCoMo-LDH/ZnO/CP在N2气氛下共退火2 h,制备出CP自支撑的封装有MoC和NiCo纳米粒的N掺杂碳纳米管(NCNT)阵列MoC-NiCo@NCNT/CP。由于MoC和NiCo的协同作用、高电导性以及无黏合剂的自支撑电极构建,使得所研制电极MoC-NiCo@NCNT/CP在1 mol·L-1 KOH溶液中具有很好的电解水析氧活性,过电位仅需243 mV时即可获得50 mA∙cm-2的电流密度,比RuO2催化剂析氧过电位更低。此外,MoC-NiCo@NCNT/CP还显示出较好的稳定性。
中图分类号:
柴亚婷, 路家伟, 王蕊欣, 焦纬洲. 碳纸自支撑N掺杂碳纳米管复合MoC/NiCo异质结构的电解水析氧性能[J]. 化工学报, 2023, 74(12): 4904-4913.
Yating CHAI, Jiawei LU, Ruixin WANG, Weizhou JIAO. Carbon paper self-supported N-doped carbon nanotubes with MoC/NiCo heterostructures for electrolytic water oxygen evolution reaction[J]. CIESC Journal, 2023, 74(12): 4904-4913.
图3 ZnO/CP、NiCoMo-LDH/ZnO/CP和MoC-NiCo@NCNT/CP的SEM图像[(a)~(c)];MoC-NiCo@NCNT/CP的HRTEM图像(d);MoC(101)、MoC(100)、NiCo(111)晶面的晶格间距图[(e)~(g)]; MoC-NiCo@NCNT/CP的HAADF图(h)及C、N、O、Ni、Co和Mo的元素分布谱图[(i),(j)]
Fig.3 SEM images of ZnO/CP, NiCoMo-LDH/ZnO/CP, MoC-NiCo@NCNT/CP[(a)—(c)]; HRTEM image of MoC-NiCo@NCNT/CP(d); Crystalline lattice spacing images of MoC (101), MoC (100), and NiCo (111)[(e)—(g)]; HAADF images(h) and corresponding elemental mapping images[(i),(j)] of C, N, O, Ni, Co, and Mo of MoC-NiCo@NCNT/CP
图4 OER连续测试20 h前后MoC-NiCo@NCNT/CP中C 1s,N 2p,O 1s,Mo 3d,Ni 2p,Co 2p元素的高分辨XPS谱图[(a)~(f)];MoC-NiCo@NCNT/CP和NiCo@NCNT/CP中Ni 2p和Co 2p的高分辨XPS谱图[(g),(h)]
Fig.4 High-resolution XPS spectra of C 1s, N 2p, O 1s, Mo 3d, Ni 2p, and Co 2p elements of MoC-NiCo@NCNT/CP before and after testing OER stability for 20 h[(a)—(f)]; Ni 2p and Co 2p high-resolution XPS spectra of MoC-NiCo@NCNT/CP and NiCo@NCNT/CP[(g),(h)]
图5 OER极化曲线(a),Tafel图(b),双层电容图(c),归一化OER极化曲线(d)和阻抗图(e)
Fig.5 OER polarization curve(a), Tafel plot(b), double layer capacitance plot(c), normalized OER polarization curves(d) and impedance plots(e)
图6 MoC-NiCo@NCNT/CP的计时电流测试图(a);MoC-NiCo@NCNT/CP循环谱测试1000次前后的LSV曲线(b);MoC-NiCo@NCNT/CP连续测试20 h前后的XRD谱图(c)和连续测试20 h后的SEM图(d)
Fig.6 Chronoamperometric current tests of MoC-NiCo@NCNT/CP(a); LSV curves of MoC-NiCo@NCNT/CP before and after 1000 CV cycles(b); XRD patterns before and after testing for 20 h (c) and SEM images after testing for 20 h of MoC-NiCo@NCNT/CP(d)
1 | Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
2 | 徐硕, 余碧莹. 中国氢能技术发展现状与未来展望[J]. 北京理工大学学报(社会科学版), 2021, 23(6): 1-12. |
Xu S, Yu B Y. Current development and prospect of hydrogen energy technology in China[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2021, 23(6): 1-12. | |
3 | Zhang M L, Wang J L, Ma L F, et al. Spontaneous synthesis of silver nanoparticles on cobalt-molybdenum layer double hydroxide nanocages for improved oxygen evolution reaction[J]. Journal of Colloid and Interface Science, 2022, 628: 299-307. |
4 | Chen Y Y, Zhang Y, Jiang W J, et al. Pomegranate-like N, P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution[J]. ACS Nano, 2016, 10(9): 8851-8860. |
5 | Hu H T, Xu J C, Zheng Y H, et al. NiS2-coated carbon fiber paper decorated with MoS2 nanosheets for hydrogen evolution[J]. ACS Applied Nano Materials, 2022, 5(8): 10933-10940. |
6 | Liu X H, Zhang L, Li L, et al. Mo2N-Ni/NF heterostructure boosts electrocatalytic hydrogen evolution with Pt-like activity[J]. Inorganic Chemistry, 2020, 59(22): 16514-16521. |
7 | Zhou J J, Li Q, Chen C, et al. Co3O4@CoNi-LDH core/shell nanosheet arrays for high-performance battery-type supercapacitors[J]. Chemical Engineering Journal, 2018, 350: 551-558. |
8 | Wang Z K, Wang C, Ye L, et al. MnO x film-coated NiFe-LDH nanosheets on Ni foam as selective oxygen evolution electrocatalysts for alkaline seawater oxidation[J]. Inorganic Chemistry, 2022, 61(38): 15256-15265. |
9 | Zhou T, Huang Y Q, Ali A, et al. Ni-MoO2 nanoparticles heterojunction loaded on stereotaxically-constructed graphene for high-efficiency overall water splitting[J]. Journal of Electroanalytical Chemistry, 2021, 897: 115555. |
10 | Zhang Y H, Zhang S H, He Y, et al. Self-supporting MoSe2/CoSe2@CFP electrocatalyst electrode for high-efficiency HER under alkaline solution[J]. Journal of Solid State Chemistry, 2021, 298: 122108. |
11 | Wang T, Wu H M, Feng C Q, et al. MoP@NiCo-LDH on nickel foam as bifunctional electrocatalyst for high efficiency water and urea-water electrolysis[J]. Journal of Materials Chemistry A, 2020, 8(35): 18106-18116. |
12 | Shervedani R K, Torabi M, Foroushani M S. Mixture design of NiCoMo ternary alloy nanoparticles assembled on graphene nanosheets and decorated with Ru nanoparticles: a Pt/C-like activity for hydrogen evolution reaction[J]. The Journal of Physical Chemistry C, 2018, 122(31): 17621-17631. |
13 | Qazi U Y, Javaid R, Zahid M, et al. Bimetallic NiCo-NiCoO2 nano-heterostructures embedded on copper foam as a self-supported bifunctional electrode for water oxidation and hydrogen production in alkaline media[J]. International Journal of Hydrogen Energy, 2021, 46(36): 18936-18948. |
14 | Zhang X L, Ding K X, Weng B C, et al. Coral-like carbon-wrapped NiCo alloys derived by emulsion aggregation strategy for efficient oxygen evolution reaction[J]. Journal of Colloid and Interface Science, 2020, 573: 96-104. |
15 | Li Z X, Hu M L, Wang P, et al. Heterojunction catalyst in electrocatalytic water splitting[J]. Coordination Chemistry Reviews, 2021, 439: 213953. |
16 | Kwon T, Jun M, Joo J, et al. Nanoscale hetero-interfaces between metals and metal compounds for electrocatalytic applications[J]. Journal of Materials Chemistry A, 2019, 7(10): 5090-5110. |
17 | Li Y Q, Wang C, Cui M, et al. Heterostructured MoO2@MoS2@Co9S8 nanorods as high efficiency bifunctional electrocatalyst for overall water splitting[J]. Applied Surface Science, 2021, 543: 148804. |
18 | Sun H M, Yan Z H, Liu F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32(3): 1806326. |
19 | Jose S, Rajeev R, Thadathil D A, et al. A road map on nanostructured surface tuning strategies of carbon fiber paper electrode: enhanced electrocatalytic applications[J]. Journal of Science: Advanced Materials and Devices, 2022, 7(3): 100460. |
20 | Geng B, Yan F, Liu L N, et al. Ni/MoC heteronanoparticles encapsulated within nitrogen-doped carbon nanotube arrays as highly efficient self-supported electrodes for overall water splitting[J]. Chemical Engineering Journal, 2021, 406: 126815. |
21 | Wang J, Zhong H X, Wang Z L, et al. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting[J]. ACS Nano, 2016, 10(2): 2342-2348. |
22 | Jeghan S M N, Kim N, Lee G. Mo-incorporated three-dimensional hierarchical ternary nickel-cobalt-molybdenum layer double hydroxide for high-efficiency water splitting[J]. International Journal of Hydrogen Energy, 2021, 46(43): 22463-22477. |
23 | 吕晓静, 朱平. 微型超级电容器的电化学阻抗谱分析[J]. 微纳电子技术, 2017, 54(1): 31-37. |
Lv X J, Zhu P. Analysis of the electrochemical impedance spectroscopy of miniature supercapacitors[J]. Micronanoelectronic Technology, 2017, 54(1): 31-37. | |
24 | Yan H J, Xie Y, Wu A P, et al. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting[J]. Advanced Materials, 2019, 31(23): e1901174. |
25 | Xiao Y, Zhang P F, Zhang X, et al. Bimetallic thin film NiCo-NiCoO2@NC as a superior bifunctional electrocatalyst for overall water splitting in alkaline media[J]. Journal of Materials Chemistry A, 2017, 5(30): 15901-15912. |
26 | Yan G, Feng X J, Khan S U, et al. Polyoxometalate and resin-derived P-doped Mo2C@N-doped carbon as a highly efficient hydrogen-evolution reaction catalyst at all pH values[J]. Chemistry-An Asian Journal, 2018, 13(2): 158-163 |
27 | Zuo P, Liu Y F, Liu X L, et al. N, P-codoped molybdenum carbide nanoparticles loaded into N, P-codoped graphene for the enhanced electrocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2022, 47(69): 29730-29740. |
28 | Qian G F, Chen J L, Yu T Q, et al. N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density[J]. Nano-Micro Letters, 2021, 13(1): 77. |
29 | Dong J N, Zhang X N, Huang J Y, et al. In-situ formation of unsaturated defect sites on converted CoNi alloy/Co-Ni LDH to activate MoS2 nanosheets for pH-universal hydrogen evolution reaction[J]. Chemical Engineering Journal, 2021, 412: 128556. |
30 | Zuo P, Ji X J, Lu J W, et al. N, P co-doped Ni/Mo-based multicomponent electrocatalysts in situ decorated on Ni foam for overall water splitting[J]. Journal of Colloid and Interface Science, 2023, 645: 895-905. |
31 | Yu Q P, Liu X B, Liu G S, et al. Constructing three-phase heterojunction with 1D/3D hierarchical structure as efficient trifunctional electrocatalyst in alkaline seawater[J]. Advanced Functional Materials, 2022, 32(46): 2205767. |
32 | Yuan Q Y, Yu Y X, Gong Y J, et al. Three-dimensional N-doped carbon nanotube frameworks on Ni foam derived from a metal-organic framework as a bifunctional electrocatalyst for overall water splitting[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3592-3602. |
33 | Sun H M, Tian C Y, Li Y L, et al. Coupling NiCo alloy and CeO2 to enhance electrocatalytic hydrogen evolution in alkaline solution[J]. Advanced Sustainable Systems, 2020, 4(11): 2000122. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[9] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[10] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[11] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[12] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[13] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[14] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[15] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 736
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 439
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||