化工学报 ›› 2023, Vol. 74 ›› Issue (12): 4945-4955.DOI: 10.11949/0438-1157.20230967
李武祥1(), 孙玉玉2, 刘丹阳1, 蔡鑫磊2, 汤吉海1,3(
), 黄益平2, 张国雯1, 张竹修1, 乔旭1,3
收稿日期:
2023-09-15
修回日期:
2024-01-02
出版日期:
2023-12-25
发布日期:
2024-02-19
通讯作者:
汤吉海
作者简介:
李武祥(1998—),男,硕士研究生,1132291890@qq.com
基金资助:
Wuxiang LI1(), Yuyu SUN2, Danyang LIU1, Xinlei CAI2, Jihai TANG1,3(
), Yiping HUANG2, Guowen ZHANG1, Zhuxiu ZHANG1, Xu QIAO1,3
Received:
2023-09-15
Revised:
2024-01-02
Online:
2023-12-25
Published:
2024-02-19
Contact:
Jihai TANG
摘要:
针对反应体系存在最不利挥发度序列的反应精馏难操作问题,提出带组分循环的反应精馏工艺,以过量正丙醇与丙酸酯化反应生产丙酸正丙酯为对象,构建了一种正丙醇循环的反应精馏工艺。通过热力学分析确定丙酸正丙酯和正丙醇二元体系存在夹点,系统研究了正丙醇循环纯度(XProOH)对反应精馏集成过程的影响,并以年度总成本(TAC)为优化目标,通过序贯优化法确定反应精馏塔及回收塔的操作参数和结构参数。结果表明,当XProOH=0.80时,达到反应精馏塔反应过程和回收塔分离过程之间的权衡,获得TAC最小的工艺过程参数。此外,进一步提出一种组成/温度-比例控制方案,研究了闭环系统中引入±10%丙酸进料流量扰动时动态响应性能,结果表明该控制方案具有较好的抗干扰能力。
中图分类号:
李武祥, 孙玉玉, 刘丹阳, 蔡鑫磊, 汤吉海, 黄益平, 张国雯, 张竹修, 乔旭. 带组分循环反应精馏合成丙酸正丙酯过程优化设计与控制[J]. 化工学报, 2023, 74(12): 4945-4955.
Wuxiang LI, Yuyu SUN, Danyang LIU, Xinlei CAI, Jihai TANG, Yiping HUANG, Guowen ZHANG, Zhuxiu ZHANG, Xu QIAO. Optimal design and control of reactive distillation process with component recycle for the synthesis of n-propyl propionate[J]. CIESC Journal, 2023, 74(12): 4945-4955.
物理量 | 数值 |
---|---|
6.014×106 | |
9.602×105 | |
59.63 | |
64.15 |
表1 反应速率的指前因子和活化能
Table 1 Pre-exponential factors and activation energy of reaction rates
物理量 | 数值 |
---|---|
6.014×106 | |
9.602×105 | |
59.63 | |
64.15 |
i-j | aij | aji | bij | bji |
---|---|---|---|---|
ProAc-ProOH | 0 | 0 | 183.915 | -145.676 |
ProAc-H2O | 0 | 0 | 73.8 | -244.8 |
ProOH-ProPro | 0 | 0 | -1.924 | -87.25 |
ProOH-H2O | 1.838 | -2.408 | -668.969 | 620.785 |
ProPro-H2O | 6.751 | 1.905 | -3267.486 | -781.895 |
ProAc-ProPro | 0 | 0 | 119.902 | -229.392 |
表2 UNIQUAC模型参数
Table 2 UNIQUAC model parameters
i-j | aij | aji | bij | bji |
---|---|---|---|---|
ProAc-ProOH | 0 | 0 | 183.915 | -145.676 |
ProAc-H2O | 0 | 0 | 73.8 | -244.8 |
ProOH-ProPro | 0 | 0 | -1.924 | -87.25 |
ProOH-H2O | 1.838 | -2.408 | -668.969 | 620.785 |
ProPro-H2O | 6.751 | 1.905 | -3267.486 | -781.895 |
ProAc-ProPro | 0 | 0 | 119.902 | -229.392 |
构成 | 类型 | 温度/℃ | 组成(摩尔基准) | ||
---|---|---|---|---|---|
文献值 | 计算值 | 文献值 | 计算值 | ||
ProOH-ProPro-H2O | 多相 | 86.20 | 86.41 | 0.350/0.130/0.520 | 0.273/0.140/0.587 |
ProOH-H2O | 均相 | 87.60 | 87.64 | 0.432/0.568 | 0.406/0.594 |
ProPro-H2O | 多相 | 90.00 | 89.10 | 0.350/0.650 | 0.333/0.667 |
ProAc-H2O | 均相 | 99.90 | 99.96 | 0.050/0.950 | 0.037/0.963 |
ProOH | — | 97.20 | 97.20 | — | — |
ProAc | — | 141.17 | 141.14 | — | — |
ProPro | — | 122.60 | 122.40 | — | — |
H2O | — | 100.00 | 100.02 | — | — |
表3 1 atm时体系的沸点及共沸数据
Table 3 Boiling point and azeotropic data of the system at 1 atm
构成 | 类型 | 温度/℃ | 组成(摩尔基准) | ||
---|---|---|---|---|---|
文献值 | 计算值 | 文献值 | 计算值 | ||
ProOH-ProPro-H2O | 多相 | 86.20 | 86.41 | 0.350/0.130/0.520 | 0.273/0.140/0.587 |
ProOH-H2O | 均相 | 87.60 | 87.64 | 0.432/0.568 | 0.406/0.594 |
ProPro-H2O | 多相 | 90.00 | 89.10 | 0.350/0.650 | 0.333/0.667 |
ProAc-H2O | 均相 | 99.90 | 99.96 | 0.050/0.950 | 0.037/0.963 |
ProOH | — | 97.20 | 97.20 | — | — |
ProAc | — | 141.17 | 141.14 | — | — |
ProPro | — | 122.60 | 122.40 | — | — |
H2O | — | 100.00 | 100.02 | — | — |
优化参数 | 精馏塔 | |
---|---|---|
RDC | RC | |
总板数 | 42 | 24 |
进料板 | 4/40 | 9 |
精馏段塔板数 | 4 | 8 |
提馏段塔板数 | 1 | 14 |
反应段塔板数 | 37 | — |
XProOH | — | 0.80 |
塔径/m | 1.40 | 0.60 |
再沸器热负荷/MW | 2.416 | 0.387 |
冷凝器热负荷/MW | -2.022 | -0.345 |
OC/(106 CNY/a) | 8.60 | 2.16 |
CC/ (106 CNY/a) | 7.86 | 1.36 |
TAC/ (106 CNY/a) | 11.22 | 2.08 |
表4 RD工艺优化结果
Table 4 The optimization results of RD process
优化参数 | 精馏塔 | |
---|---|---|
RDC | RC | |
总板数 | 42 | 24 |
进料板 | 4/40 | 9 |
精馏段塔板数 | 4 | 8 |
提馏段塔板数 | 1 | 14 |
反应段塔板数 | 37 | — |
XProOH | — | 0.80 |
塔径/m | 1.40 | 0.60 |
再沸器热负荷/MW | 2.416 | 0.387 |
冷凝器热负荷/MW | -2.022 | -0.345 |
OC/(106 CNY/a) | 8.60 | 2.16 |
CC/ (106 CNY/a) | 7.86 | 1.36 |
TAC/ (106 CNY/a) | 11.22 | 2.08 |
1 | Chia D N, Duanmu F, Sorensen E. Single- and multi-objective optimisation of hybrid distillation-pervaporation and dividing wall column structures[J]. Chemical Engineering Research and Design, 2023, 194: 280-305. |
2 | 袁海鸥, 叶方俊, 张硕, 等. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806. |
Yuan H O, Ye F J, Zhang S, et al. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers[J]. CIESC Journal, 2023, 74(2): 796-806. | |
3 | 孙诗瑞, 杨傲, 石涛, 等. 特殊精馏热耦合强化技术研究进展[J]. 化工学报, 2020, 71(10): 4575-4589. |
Sun S R, Yang A, Shi T, et al. Research advances in thermally coupled intensification technology for special distillation[J]. CIESC Journal, 2020, 71(10): 4575-4589. | |
4 | Kong Z Y, Lee H Y, Sunarso J. The evolution of process design and control for ternary azeotropic separation: recent advances in distillation and future directions[J]. Separation and Purification Technology, 2022, 284: 120292. |
5 | 于斌, 刘春晖, 郑广强, 等. 热集成变压精馏乙二醇脱水系统的控制方案优化[J]. 化工进展, 2021, 40(S2): 56-63. |
Yu B, Liu C H, Zheng G Q, et al. Optimization of control of glycol-water separation by heat-integrated pressure swing distillation[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 56-63. | |
6 | Wang Y L, Ma K, Yu M X, et al. An improvement scheme for pressure-swing distillation with and without heat integration through an intermediate connection to achieve energy savings[J]. Computers & Chemical Engineering, 2018, 119: 439-449. |
7 | 王伟林, 李忠, 郑华艳. 共沸剂对碳酸二甲酯-甲醇分离效率的影响[J]. 精细化工, 2020, 37(8): 1665-1671. |
Wang W L, Li Z, Zheng H Y. Effect of azeotrope on separation of dimethyl carbonate-methanol[J]. Fine Chemicals, 2020, 37(8): 1665-1671. | |
8 | Zhai J G, Chen X, Xie H F, et al. Energy-saving heat pump-assisted extractive-azeotropic dividing wall column with heat exchanger network for separating acetonitrile and water: a techno-economic and inherent safety investigation[J]. Process Safety and Environmental Protection, 2023, 173: 178-190. |
9 | Kong Z Y, Wang Q, Yang A, et al. Control of new energy-intensified triple column extractive distillation using feed split technique[J]. Journal of Chemical Technology & Biotechnology, 2023, 98(7): 1742-1758. |
10 | 柳旭, 许松林, 王燕飞. 原甲酸三甲酯-醋酸萃取精馏全局多目标优化[J]. 化工学报, 2022, 73(10): 4518-4526. |
Liu X, Xu S L, Wang Y F. Global multi-objective optimization of trimethyl orthoformate-acetic acid extractive distillation[J]. CIESC Journal, 2022, 73(10): 4518-4526. | |
11 | Zhao Y T, Ma K, Bai W T, et al. Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol[J]. Energy, 2018, 148: 296-308. |
12 | 高鑫, 赵悦, 李洪, 等. 反应精馏过程耦合强化技术基础与应用研究述评[J]. 化工学报, 2018, 69(1): 218-238. |
Gao X, Zhao Y, Li H, et al. Review of basic and application investigation of reactive distillation technology for process intensification[J]. CIESC Journal, 2018, 69(1): 218-238. | |
13 | Gao X, Geng X L. Application of the chemical-looping concept for azoetrope separation[J]. Engineering, 2021, 7(1): 178-199. |
14 | Kiss A A, Jobson M, Gao X. Reactive distillation: stepping up to the next level of process intensification[J]. Industrial & Engineering Chemistry Research, 2019, 58(15): 5909-5918. |
15 | Li X G, Wang R, Yan Y T, et al. Ethylene glycol recovery from 2-ethyl-1, 3-dioxolane hydrolysis via reactive distillation: pilot-scale experiments and process analysis[J]. Industrial & Engineering Chemistry Research, 2019, 58(45): 20746-20757. |
16 | Feng S Y, Ye Q, Xia H, et al. Integrating a vapor recompression heat pump into a lower partitioned reactive dividing-wall column for better energy-saving performance[J]. Chemical Engineering Research and Design, 2017, 125: 204-213. |
17 | Harvianto G R, Ahmad F, Lee M. A hybrid reactive distillation process with high selectivity pervaporation for butyl acetate production via transesterification[J]. Journal of Membrane Science, 2017, 543: 49-57. |
18 | Huang K J, Wang S J, Ding W M. Towards further internal heat integration in design of reactive distillation columns(part Ⅲ): Application to a MTBE reactive distillation column[J]. Chemical Engineering Science, 2008, 63(8): 2119-2134. |
19 | Tung S T, Yu C C. Effects of relative volatility ranking to the design of reactive distillation[J]. AIChE Journal, 2007, 53(5): 1278-1297. |
20 | Novita F J, Lee H Y, Lee M. Energy-efficient design of an ethyl levulinate reactive distillation process via a thermally coupled distillation with external heat integration arrangement[J]. Industrial & Engineering Chemistry Research, 2017, 56(24): 7037-7048. |
21 | 孔倩, 陆佳伟, 王琼, 等. 乳酸过量进料反应精馏合成乳酸甲酯研究[J]. 高校化学工程学报, 2021, 35(2): 280-286. |
Kong Q, Lu J W, Wang Q, et al. Study on reactive distillation process for synthesis of methyl lactate with overfeeding[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(2): 280-286. | |
22 | Luyben W L. Design and control of the butyl acetate process[J]. Industrial & Engineering Chemistry Research, 2011, 50(3): 1247-1263. |
23 | Dai X, Ye Q, Yu H, et al. Design and control of dividing-wall column for the synthesis of n-propyl propionate by reactive distillation[J]. Industrial & Engineering Chemistry Research, 2015, 54(15): 3919-3932. |
24 | Altman E, Kreis P, van Gerven T, et al. Pilot plant synthesis of n-propyl propionate via reactive distillation with decanter separator for reactant recovery. Experimental model validation and simulation studies[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(9): 965-972. |
25 | Cruz-Díaz M, Buchaly C, Kreis P, et al. Synthesis of n-propyl propionate in a pilot-plant reactive distillation column: experimental study and simulation[J]. Computers & Chemical Engineering, 2012, 39: 118-128. |
26 | Xu H, Ye Q, Zhang H, et al. Design and control of reactive distillation-recovery distillation flowsheet with a decanter for synthesis of n-propyl propionate[J]. Chemical Engineering and Processing: Process Intensification, 2014, 85: 38-47. |
27 | Duarte C, Buchaly C, Kreis P, et al. Esterification of propionic acid with n-propanol catalytic and non-catalytic kinetic study[J]. Chemical and Process Engineering, 2006, 27(1): 273-286. |
28 | Buchaly C, Kreis P, Górak A. Hybrid separation processes—combination of reactive distillation with membrane separation[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(9): 790-799. |
29 | Saleem A, Farooq U, Riaz A, et al. Understanding the impact of reactive holdup on process intensification in the design of reactive distillation column[J]. Chemical Engineering and Processing - Process Intensification, 2023, 191: 109440. |
30 | Xia H, Dai X, Ye Q, et al. Design and control of entrainer-assisted reactive distillation for n-propyl propionate production[J]. Comput. Chem. Eng., 2017, 106: 559-571. |
31 | 李超群. 正丙醇精制工艺的模拟研究与优化[D]. 天津: 天津大学, 2007. |
Li C Q. Simulation and optimization of the purification process of n-propanol[D]. Tianjin: Tianjin University, 2007. | |
32 | Douglas J M. Conceptual Design of Chemical Processes[M]. New York: McGraw-Hill, 1988. |
33 | 王琼, 张国雯, 汤吉海, 等.“背包式”反应精馏生产丙烯酸叔丁酯过程控制策略设计[J]. 南京工业大学学报(自然科学版), 2022, 44(1): 20-27, 44. |
Wang Q, Zhang G W, Tang J H, et al. Design of control scheme for tert-butyl acrylate production by side-reactor column configuration[J]. Journal of Nanjing Tech University (Natural Science Edition), 2022, 44(1): 20-27, 44. | |
34 | Luyben W L. Distillation Design and Control Using Aspen Simulation[M]. 2nd ed. Hoboken, NJ: Wiley, 2013: 145-148. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[9] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[10] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[12] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[13] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[14] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[15] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 313
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 181
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||