化工学报 ›› 2025, Vol. 76 ›› Issue (1): 335-347.DOI: 10.11949/0438-1157.20240563
收稿日期:2024-05-26
修回日期:2024-06-26
出版日期:2025-01-25
发布日期:2025-02-08
通讯作者:
王家瑞
作者简介:邓志诚(2001—),男,硕士研究生,deng2194410841@stu.xjtu.edu.cn
基金资助:
Zhicheng DENG1(
), Huan YANG2, Simin WANG1, Jiarui WANG1(
)
Received:2024-05-26
Revised:2024-06-26
Online:2025-01-25
Published:2025-02-08
Contact:
Jiarui WANG
摘要:
氢燃料由于密度小、绝热燃烧温度高,造成了燃烧室内燃空掺混困难和局部热力型NO x 过高等问题。基于GRI-Mech 3.0机理,结合FGM燃烧模型对纯氢燃烧开展了数值模拟,考虑了当量比、微管空气管径、燃料管径、扰流结构对燃空混合特性和燃烧性能的影响。研究结果表明,空气管径的增大不利于燃空的充分混合,当量比为0.4的贫燃状态下,空气管径扩大三倍后NO排放量提高了13倍;燃料管径从0.20 mm增大至0.65 mm后,导致各当量比下氢气射流深度均降低30%以上,燃空混合效果变差,锚定火焰转变为抬升火焰;当量比的增大会使火焰温度升高,削弱了小空气管径或小燃料管径下NO x 排放的控制效果;扰流结构强化了燃料与空气的预混过程,提高了燃烧室温度均匀度,降低了NO x 的生成,且采用结构B时混合优化效果与基础燃烧特征更佳。
中图分类号:
邓志诚, 杨欢, 王斯民, 王家瑞. 微混燃烧器中微管结构对氢燃料掺混效果与燃烧性能影响[J]. 化工学报, 2025, 76(1): 335-347.
Zhicheng DENG, Huan YANG, Simin WANG, Jiarui WANG. Microtube structure impacts on hydrogen-air mixing effect and combustion performance in micromix combustor[J]. CIESC Journal, 2025, 76(1): 335-347.
| 模型 | 空气管径Da/mm | 燃料管径Df/mm |
|---|---|---|
| 变空气管径 | 2.5 | 0.35 |
| 5.0 | ||
| 7.5 | ||
| 10.0 | ||
| 变燃料管径 | 2.5 | 0.20 |
| 0.35 | ||
| 0.50 | ||
| 0.65 |
表1 不同微管几何模型参数设置
Table 1 Different microtube configurations parameters setting
| 模型 | 空气管径Da/mm | 燃料管径Df/mm |
|---|---|---|
| 变空气管径 | 2.5 | 0.35 |
| 5.0 | ||
| 7.5 | ||
| 10.0 | ||
| 变燃料管径 | 2.5 | 0.20 |
| 0.35 | ||
| 0.50 | ||
| 0.65 |
| 1 | Ahmed A, Al-Amin A Q, Ambrose A F, et al. Hydrogen fuel and transport system: a sustainable and environmental future[J]. International Journal of Hydrogen Energy, 2016, 41(3): 1369-1380. |
| 2 | Yue M L, Lambert H, Pahon E, et al. Hydrogen energy systems: a critical review of technologies, applications, trends and challenges[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111180. |
| 3 | 吴锋, 杨承, 肖华, 等. 氢混天然气燃气轮机加湿低氮燃烧性能研究[J]. 热能动力工程, 2024, 39(1): 137-148. |
| Wu F, Yang C, Xiao H, et al. Research on DeNO x combustion performance of humidified natural gas with H2 blending in gas turbine[J]. Journal of Engineering for Thermal Energy and Power, 2024, 39(1): 137-148. | |
| 4 | Shadidi B, Najafi G, Yusaf T. A review of hydrogen as a fuel in internal combustion engines[J]. Energies, 2021, 14(19): 6209. |
| 5 | Eriksson E L V, Gray E M. Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems—a critical review[J]. Applied Energy, 2017, 202: 348-364. |
| 6 | 吴一, 温小萍, 张素梅, 等. 垂直圆管内掺氢甲烷燃烧不稳定性研究[J]. 化工学报, 2022, 73(10): 4780-4790. |
| Wu Y, Wen X P, Zhang S M, et al. Study on combustion instability of hydrogen methane-doped in vertical circular tubes[J]. CIESC Journal, 2022, 73(10): 4780-4790. | |
| 7 | 史润, 胡宏斌, 杜娟, 等. 氢燃料微混燃烧器燃烧特性研究[J]. 热能动力工程, 2024, 39(1): 127-136. |
| Shi R, Hu H B, Du J, et al. Study on combustion characterization of hydrogen fuel micro mixing burner[J]. Journal of Engineering for Thermal Energy and Power, 2024, 39(1): 127-136. | |
| 8 | Zhang Y S, Yang T M, Liu X Q, et al. Reduction of emissions from a syngas flame using micromixing and dilution with CO2 [J]. Energy & Fuels, 2012, 26(11): 6595-6601. |
| 9 | 邱朋华, 卢成, 张林瑶, 等. 氢燃料微混燃烧技术研究进展[J]. 热能动力工程, 2023, 38(5): 14-23. |
| Qiu P H, Lu C, Zhang L Y, et al. Research progress of hydrogen micromix combustion technology[J]. Journal of Engineering for Thermal Energy and Power, 2023, 38(5): 14-23. | |
| 10 | Lu C, Zhang L Y, Jiang X P, et al. The flame structure and combustion dynamics in a steam diluted H2/air micromix flame[J]. Fuel, 2024, 357: 129903. |
| 11 | Lu C, Zhang L Y, Xing C, et al. Effects of characteristic diameter, steam dilution, and equivalence ratio on NO formation for a H2/air micromix design[J]. International Journal of Hydrogen Energy, 2024, 61: 1133-1141. |
| 12 | Lu C, Jiang X P, Zhang L Y, et al. The turbulent flame structure in a steam diluted H2/air micromix flame[J]. International Journal of Hydrogen Energy, 2023, 48(97): 38496-38507. |
| 13 | Hussain M, Abdelhafez A, Nemitallah M A, et al. A highly diluted oxy-fuel micromixer combustor with hydrogen enrichment for enhancing turndown in gas turbines[J]. Applied Energy, 2020, 279: 115818. |
| 14 | 刘海清, 吕亚锦, 张林瑶, 等. 带伴流的合成气微混火焰特性研究[J]. 新能源进展, 2024, 12(2): 117-123. |
| Liu H Q, Lü Y J, Zhang L Y, et al. Flame characteristics of syngas micromix with coflow[J]. Advances in New and Renewable Energy, 2024, 12(2): 117-123. | |
| 15 | Liu X W, Shao W W, Liu Y, et al. Cold flow characteristics of a novel high-hydrogen micromix model burner based on multiple confluent turbulent round jets[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5776-5789. |
| 16 | Liu X W, Shao W W, Liu C, et al. Numerical study of a high-hydrogen micromix model burner using flamelet-generated manifold[J]. International Journal of Hydrogen Energy, 2021, 46(39): 20750-20764. |
| 17 | Ayed H A, Kusterer K, Funke H H W, et al. Improvement study for the dry-low-NO x hydrogen micromix combustion technology[J]. Propulsion and Power Research, 2015, 4(3): 132-140. |
| 18 | Ayed A H, Kusterer K, Funke H H W, et al. CFD based exploration of the dry-low-NO x hydrogen micromix combustion technology at increased energy densities[J]. Propulsion and Power Research, 2017, 6(1): 15-24. |
| 19 | 莫妲, 林宇震, 马宏宇, 等. 基于钝体扰流的氢气微混扩散燃烧组织研究[J]. 航空学报, 2024, 45(8): 94-108. |
| Mo D, Lin Y Z, Ma H Y, et al. Investigation on hydrogen micromix diffusive combustion organization based on bluff body disturbance[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 94-108. | |
| 20 | Funke H H W, Boerner S, Keinz J, et al. Numerical and experimental characterization of low NO x micromix combustion principle for industrial hydrogen gas turbine applications[C]//ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Copenhagen, Denmark, 2013: 1069-1079. |
| 21 | Lopez-Ruiz G, Alava I, Blanco J M. Study on the feasibility of the micromix combustion principle in low NO x H2 burners for domestic and industrial boilers: a numerical approach[J]. Energy, 2021, 236: 121456. |
| 22 | 陈炫任, 王辉, 王超, 等. 特征参数对微混喷嘴内燃料与空气混合均匀性影响[J]. 洁净煤技术, 2024, 30(2): 265-272. |
| Chen X R, Wang H, Wang C, et al. Effect of characteristic parameters on the fuel-air mixing uniformity inside the micromix nozzle[J]. Clean Coal Technology, 2024, 30(2): 265-272. | |
| 23 | Zhang T H, Liu F G, You X Y. Optimization of gas mixing system of premixed burner based on CFD analysis[J]. Energy Conversion and Management, 2014, 85: 131-139. |
| 24 | Sun X X, Agarwal P, Carbonara F, et al. Numerical investigation into the impact of injector geometrical design parameters on hydrogen micromix combustion characteristics[C]//ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Virtual, 2021. |
| 25 | Long P, She Y W, Chen H J. Research on gas mixing characteristics and combustion performance of micro burner with different channel angle[J]. IOP Conference Series: Earth and Environmental Science, 2020, 555(1): 012034. |
| 26 | Araoye A A, Abdelhafez A, Ben-Mansour R, et al. On the quality of micromixing in an oxy-fuel micromixer burner for gas turbine applications: a numerical study[J]. Chemical Engineering and Processing-Process Intensification, 2021, 162: 108336. |
| 27 | Patankar S V. Numerical Heat Transfer and Fluid Flow[M]. CRC Press, 2018 |
| 28 | Sabin R, Sethi B, Gauthier P Q. Comparative performance study of CFD species models for hydrogen micromix combustion[D]. Cranfield: Cranfield University, 2016. |
| 29 | Ben Abdallah R, Sethi V, Gauthier P Q, et al. A detailed analytical study of hydrogen reaction in a novel micromix combustion system[C]//ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Oslo, Norway, 2018. |
| 30 | Smith G P, Golden D M, Frenklach M. GRIMech 3.0 [S]. Berkeley: University of California, 1999. |
| 31 | Kumar P, Meyer T R. Experimental and modeling study of chemical-kinetics mechanisms for H2-NH3-air mixtures in laminar premixed jet flames[J]. Fuel, 2013, 108: 166-176. |
| 32 | Danon B, Cho E S, Jong W D, et al. Numerical investigation of burner positioning effects in a multi-burner flameless combustion furnace[J]. Applied Thermal Engineering, 2011, 31(17/18): 3885-3896. |
| 33 | Mo S H, Li Y Q, Yuan W H. Optimizing thermal performance of a premixed hydrogen/air fueled micro-combustor with baffles[J]. Journal of Central South University, 2023, 30(12): 4285-4298. |
| 34 | Lefebvre A H, Ballal D R. Gas Turbine Combustion[M]. CRC Press, 2010. |
| 35 | Luo Q H, Hu J B, Sun B G, et al. Experimental investigation of combustion characteristics and NO x emission of a turbocharged hydrogen internal combustion engine[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5573-5584. |
| 36 | Marragou S, Magnes H, Aniello A, et al. Experimental analysis and theoretical lift-off criterion for H2/air flames stabilized on a dual swirl injector[J]. Proceedings of the Combustion Institute, 2023, 39(4): 4345-4354. |
| [1] | 韩启沃, 刘永峰, 裴普成, 张璐, 姚圣卓. 工作温度对PEMFC水分布、质子传输及性能影响分析[J]. 化工学报, 2025, 76(1): 374-384. |
| [2] | 王瀚彬, 胡帅, 毕丰雷, 李隽森, 贺来宾. 新型波纹翅片金属氢化物反应器的放氢性能有限元分析[J]. 化工学报, 2025, 76(1): 221-230. |
| [3] | 高羡明, 杨汶轩, 卢少辉, 任晓松, 卢方财. 双槽道结构对超疏水表面液滴合并弹跳的影响[J]. 化工学报, 2025, 76(1): 208-220. |
| [4] | 董沛洲, 喻慧文, 谈灵操, 徐百平, 杨芳. 基于移动粒子半隐式方法的非充满折流板双螺杆流道内混合[J]. 化工学报, 2025, 76(1): 198-207. |
| [5] | 杨晨, 毛伟, 董兴宗, 田松, 赵锋伟, 吕剑. 选择性加氢脱氯合成烯烃研究进展[J]. 化工学报, 2025, 76(1): 53-70. |
| [6] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
| [7] | 韩志敏, 周相宇, 张宏宇, 徐志明. 不同粗糙元结构下CaCO3污垢局部沉积特性[J]. 化工学报, 2025, 76(1): 151-160. |
| [8] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
| [9] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
| [10] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
| [11] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
| [12] | 赵焕娟, 包颖昕, 于康, 刘婧, 钱新明. 多元组分爆轰不稳定性定量实验研究[J]. 化工学报, 2024, 75(S1): 339-348. |
| [13] | 蒋晓煜, 雒焕婷, 洪瑞, 杜文静. 调制差示扫描量热法测定二元醇型冷却液的比热容[J]. 化工学报, 2024, 75(S1): 40-46. |
| [14] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
| [15] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号