化工学报 ›› 2025, Vol. 76 ›› Issue (3): 1191-1206.DOI: 10.11949/0438-1157.20240976
李京润1(), 杨思宇1(
), 刘庆辉2, 潘安2, 王嘉岳2, 符小贵2, 余皓1(
)
收稿日期:
2024-08-30
修回日期:
2024-10-23
出版日期:
2025-03-25
发布日期:
2025-03-28
通讯作者:
杨思宇,余皓
作者简介:
李京润(2000—),男,硕士研究生,202221025305@mail.scut.edu.cn
基金资助:
Jingrun LI1(), Siyu YANG1(
), Qinghui LIU2, An PAN2, Jiayue WANG2, Xiaogui FU2, Hao YU1(
)
Received:
2024-08-30
Revised:
2024-10-23
Online:
2025-03-25
Published:
2025-03-28
Contact:
Siyu YANG, Hao YU
摘要:
构建了包含风力发电、火力发电、蓄电池和电解制氢设备的混合能源发电制氢系统模型,探究大规模风-火发电制氢系统在不同运行策略下的经济效益。以700 MW风电场和350 MW火电厂为研究对象,采用绿电制氢、绿电-谷电制氢和绿电-火电制氢三种策略,建立年利润最大化的混合整数模型,分析不同风力资源和电解槽装机容量下的系统性能,结果表明,风力资源和电解槽容量显著影响系统性能和运行策略的选择。风力充足时,500 MW电解槽容量下绿电-火电制氢最优;风力匮乏时,400 MW容量下绿电-谷电策略在拥有较低碳排放的同时经济性最优。富风季采用绿电-谷电策略,贫风季采用绿电-火电策略的组合方案可在合理碳排放范围内实现最大年利润。此外,还分析了制氢系统投资成本和碳交易机制对氢气价格的影响,发现随着投资成本降低,碳排放相关成本的上升,绿电制氢策略在未来更具有经济性。
中图分类号:
李京润, 杨思宇, 刘庆辉, 潘安, 王嘉岳, 符小贵, 余皓. 大规模风电耦合火电制氢多情景下不同运行策略分析[J]. 化工学报, 2025, 76(3): 1191-1206.
Jingrun LI, Siyu YANG, Qinghui LIU, An PAN, Jiayue WANG, Xiaogui FU, Hao YU. Analysis of multiple operating strategies for large-scale wind power coupled with thermal power for hydrogen production under various scenarios[J]. CIESC Journal, 2025, 76(3): 1191-1206.
参数 | 数值 |
---|---|
0.01×302 | |
3 | |
25 | |
13 | |
4000 | |
0.0046 | |
0.95 | |
0.95 | |
8.05×10-5 | |
-2.5×10-7 | |
1.002 | |
8.424 | |
247.3 | |
0.185 | |
141.86 | |
250 | |
0.96 |
表1 系统主要参数[18-19]
Table 1 System key parameters [18-19]
参数 | 数值 |
---|---|
0.01×302 | |
3 | |
25 | |
13 | |
4000 | |
0.0046 | |
0.95 | |
0.95 | |
8.05×10-5 | |
-2.5×10-7 | |
1.002 | |
8.424 | |
247.3 | |
0.185 | |
141.86 | |
250 | |
0.96 |
机组 | 出力功率/MW | 爬坡功率/MW | a/tce | b/(tce/MWh) | c/(106 tce/(MWh)2) | 启停时间/h | ||
---|---|---|---|---|---|---|---|---|
最小 | 最大 | 上限 | 下限 | |||||
#1 | 125 | 250 | 100 | -100 | 5.26 | 0.31 | 37.38 | 4 |
#2 | 50 | 100 | 50 | -50 | 4.65 | 0.32 | 45.86 | 2 |
表2 火电机组相关参数[26]
Table 2 Thermal power unit parameters[26]
机组 | 出力功率/MW | 爬坡功率/MW | a/tce | b/(tce/MWh) | c/(106 tce/(MWh)2) | 启停时间/h | ||
---|---|---|---|---|---|---|---|---|
最小 | 最大 | 上限 | 下限 | |||||
#1 | 125 | 250 | 100 | -100 | 5.26 | 0.31 | 37.38 | 4 |
#2 | 50 | 100 | 50 | -50 | 4.65 | 0.32 | 45.86 | 2 |
设备 | 投资成本 | 运维成本 |
---|---|---|
风力发电机 | 7000 CNY/kW | 34 CNY/kW |
碱性电解槽 | 4000 CNY/kW | 80 CNY/kW |
蓄电池 | 1200 CNY/kW | 24 CNY/kW |
储罐 | 3800 CNY/kW | 76 CNY/kW |
逆变整流器 | 60 CNY/kW | — |
表3 主要设备投资运维成本[18, 27]
Table 3 Capital investment and operational maintenance costs of key equipment[18, 27]
设备 | 投资成本 | 运维成本 |
---|---|---|
风力发电机 | 7000 CNY/kW | 34 CNY/kW |
碱性电解槽 | 4000 CNY/kW | 80 CNY/kW |
蓄电池 | 1200 CNY/kW | 24 CNY/kW |
储罐 | 3800 CNY/kW | 76 CNY/kW |
逆变整流器 | 60 CNY/kW | — |
指标 | 数值 |
---|---|
氢气产量/(m3/h,标准工况) | 1000 |
氧气产量/(m3/h,标准工况) | 500 |
系统最大工作压力/MPa | 1.6 |
电解槽工作温度/℃ | 90 |
额定工作电流/A | 8000 |
电解槽小室数量/个 | 302 |
额定工作电压/V | 604 |
运行工作范围/% | 30~100 |
表4 单台碱性电解槽的主要技术参数[28]
Table 4 Main technical parameters of single alkaline electrolyzer[28]
指标 | 数值 |
---|---|
氢气产量/(m3/h,标准工况) | 1000 |
氧气产量/(m3/h,标准工况) | 500 |
系统最大工作压力/MPa | 1.6 |
电解槽工作温度/℃ | 90 |
额定工作电流/A | 8000 |
电解槽小室数量/个 | 302 |
额定工作电压/V | 604 |
运行工作范围/% | 30~100 |
Technology | Emissions/(kg/kg) |
---|---|
natural gas | 10~13 |
coal | 22~26 |
grid electricity | 24 |
表5 常规制氢排放[29]
Table 5 Emissions for conventional hydrogen production[29]
Technology | Emissions/(kg/kg) |
---|---|
natural gas | 10~13 |
coal | 22~26 |
grid electricity | 24 |
策略 | 氢气价格/(CNY/kg) | ||||||
---|---|---|---|---|---|---|---|
200 MW | 250 MW | 300 MW | 350 MW | 400 MW | 450 MW | 500 MW | |
全季节策略1 | 20.0 | 20.1 | 20.2 | 20.4 | 20.5 | 20.7 | 20.9 |
全季节策略2 | 20.2 | 20.3 | 20.5 | 20.7 | 20.8 | 21.0 | 21.1 |
全季节策略3 | 20.4 | 20.6 | 20.8 | 21.0 | 21.2 | 21.4 | 21.5 |
富风季策略1贫风季策略2 | 20.0 | 20.1 | 20.2 | 20.4 | 20.5 | 20.6 | 20.7 |
富风季策略1贫风季策略3 | 20.2 | 20.3 | 20.4 | 20.6 | 20.6 | 20.7 | 20.8 |
富风季策略2贫风季策略1 | 20.1 | 20.3 | 20.4 | 20.7 | 20.9 | 21.1 | 21.3 |
富风季策略2贫风季策略3 | 20.3 | 20.4 | 20.6 | 20.8 | 21.0 | 21.1 | 21.2 |
富风季策略3贫风季策略1 | 20.3 | 20.4 | 20.6 | 20.9 | 21.1 | 21.4 | 21.6 |
富风季策略3贫风季策略2 | 20.3 | 20.5 | 20.6 | 20.9 | 21.0 | 21.2 | 21.4 |
表6 不同投资成本条件下电解槽装机容量对全季节氢气价格的影响
Table 6 Effect of electrolyzer capacities on total seasonal hydrogen price under different investment costs
策略 | 氢气价格/(CNY/kg) | ||||||
---|---|---|---|---|---|---|---|
200 MW | 250 MW | 300 MW | 350 MW | 400 MW | 450 MW | 500 MW | |
全季节策略1 | 20.0 | 20.1 | 20.2 | 20.4 | 20.5 | 20.7 | 20.9 |
全季节策略2 | 20.2 | 20.3 | 20.5 | 20.7 | 20.8 | 21.0 | 21.1 |
全季节策略3 | 20.4 | 20.6 | 20.8 | 21.0 | 21.2 | 21.4 | 21.5 |
富风季策略1贫风季策略2 | 20.0 | 20.1 | 20.2 | 20.4 | 20.5 | 20.6 | 20.7 |
富风季策略1贫风季策略3 | 20.2 | 20.3 | 20.4 | 20.6 | 20.6 | 20.7 | 20.8 |
富风季策略2贫风季策略1 | 20.1 | 20.3 | 20.4 | 20.7 | 20.9 | 21.1 | 21.3 |
富风季策略2贫风季策略3 | 20.3 | 20.4 | 20.6 | 20.8 | 21.0 | 21.1 | 21.2 |
富风季策略3贫风季策略1 | 20.3 | 20.4 | 20.6 | 20.9 | 21.1 | 21.4 | 21.6 |
富风季策略3贫风季策略2 | 20.3 | 20.5 | 20.6 | 20.9 | 21.0 | 21.2 | 21.4 |
策略 | 氢价格/(CNY/kg) | ||||||
---|---|---|---|---|---|---|---|
200 MW | 250 MW | 300 MW | 350 MW | 400 MW | 450 MW | 500 MW | |
全季节策略1 | 27.1 | 27.8 | 28.6 | 29.6 | 30.5 | 31.5 | 32.5 |
全季节策略2 | 27.6 | 28.2 | 28.8 | 29.5 | 30.2 | 30.9 | 31.5 |
全季节策略3 | 28.1 | 28.7 | 29.3 | 30.0 | 30.6 | 31.2 | 31.7 |
富风季策略1贫风季策略2 | 27.3 | 27.8 | 28.4 | 29.1 | 29.7 | 30.3 | 30.9 |
富风季策略1贫风季策略3 | 27.5 | 28.0 | 28.6 | 29.2 | 29.7 | 30.2 | 30.7 |
富风季策略2贫风季策略1 | 27.4 | 28.1 | 29.0 | 30.0 | 31.0 | 32.1 | 33.1 |
富风季策略2贫风季策略3 | 27.8 | 28.4 | 29.0 | 29.6 | 30.2 | 30.8 | 31.3 |
富风季策略3贫风季策略1 | 27.7 | 28.5 | 29.4 | 30.4 | 31.4 | 32.5 | 33.5 |
富风季策略3贫风季策略2 | 27.9 | 28.5 | 29.2 | 29.9 | 30.6 | 31.3 | 32.0 |
表7 不同碳配额条件下电解槽装机容量对全季节氢气价格的影响
Table 7 Effect of electrolyzer capacities on total seasonal hydrogen price under different envission allowances
策略 | 氢价格/(CNY/kg) | ||||||
---|---|---|---|---|---|---|---|
200 MW | 250 MW | 300 MW | 350 MW | 400 MW | 450 MW | 500 MW | |
全季节策略1 | 27.1 | 27.8 | 28.6 | 29.6 | 30.5 | 31.5 | 32.5 |
全季节策略2 | 27.6 | 28.2 | 28.8 | 29.5 | 30.2 | 30.9 | 31.5 |
全季节策略3 | 28.1 | 28.7 | 29.3 | 30.0 | 30.6 | 31.2 | 31.7 |
富风季策略1贫风季策略2 | 27.3 | 27.8 | 28.4 | 29.1 | 29.7 | 30.3 | 30.9 |
富风季策略1贫风季策略3 | 27.5 | 28.0 | 28.6 | 29.2 | 29.7 | 30.2 | 30.7 |
富风季策略2贫风季策略1 | 27.4 | 28.1 | 29.0 | 30.0 | 31.0 | 32.1 | 33.1 |
富风季策略2贫风季策略3 | 27.8 | 28.4 | 29.0 | 29.6 | 30.2 | 30.8 | 31.3 |
富风季策略3贫风季策略1 | 27.7 | 28.5 | 29.4 | 30.4 | 31.4 | 32.5 | 33.5 |
富风季策略3贫风季策略2 | 27.9 | 28.5 | 29.2 | 29.9 | 30.6 | 31.3 | 32.0 |
1 | 新华社.习近平在第七十五届联合国大会一般性辩论上发表重要讲话[R].中华人民共和国中央人民政府, 2020. https://www.gov.cn/xinwen/2020-09/22/content_5546168.htm.Xinhua News Agency. Xi Jinping delivers important speech at the general debate of the 75th UN General Assembly[R]. Central People’s Government of the People’s Republic of China, 2020. https://www.gov.cn/xinwen/2020/09/22/content_5546168.htm. |
2 | 李贵贤, 曹阿波, 孟文亮, 等. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
Li G X, Cao A B, Meng W L, et al. Process design and evaluation of CO2 to methanol coupled with SOEC[J]. CIESC Journal, 2023, 74(7): 2999-3009. | |
3 | 吉旭, 周步祥, 贺革, 等. 大规模可再生能源电解水制氢合成氨关键技术与应用研究进展[J]. 工程科学与技术, 2022, 54(5): 1-11. |
Ji X, Zhou B X, He G, et al. Research review of the key technology and application of large-scale water electrolysis powered by renewable energy to hydrogen and ammonia production[J]. Advanced Engineering Sciences, 2022, 54(5): 1-11. | |
4 | 广东省人民政府办公厅广东省人民政府办公厅关于印发广东省海洋经济发展“十四五”规划的通知[EB/OL]. [2021-12-14]. . |
Office of the People’s Governement of Guangdong Province. General Office of the People’s Government of Guangdong Province. Notice on Issuing the “14th Five-Year Plan” for the Development of Guangdong’s Marine Economy[EB/OL]. [2021-12-14]. . | |
5 | Luo Z B, Wang X B, Wen H, et al. Hydrogen production from offshore wind power in South China[J]. International Journal of Hydrogen Energy, 2022, 47(58): 24558-24568. |
6 | Scolaro M, Kittner N. Optimizing hybrid offshore wind farms for cost-competitive hydrogen production in Germany[J]. International Journal of Hydrogen Energy, 2022, 47(10): 6478-6493. |
7 | Nascimento da Silva G, Rochedo P R R, Szklo A. Renewable hydrogen production to deal with wind power surpluses and mitigate carbon dioxide emissions from oil refineries[J]. Applied Energy, 2022, 311: 118631. |
8 | 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142. |
Wang J, Kang L X, Liu Y Z. Optimal design of electricity-hydrogen energy storage systems for renewable energy penetrating into chemical process systems[J]. CIESC Journal, 2020, 71(3): 1131-1142. | |
9 | 安广禄, 刘永忠, 康丽霞. 适应季节性氨需求的可再生能源合成氨系统优化设计[J]. 化工学报, 2021, 72(3): 1595-1605. |
An G L, Liu Y Z, Kang L X. Optimal design of synthetic ammonia production system powered by renewable energy for seasonal demands of ammonia[J]. CIESC Journal, 2021, 72(3): 1595-1605. | |
10 | 王集杰, 韩哲, 陈思宇, 等. 太阳燃料甲醇合成[J]. 化工进展, 2022, 41(3): 1309-1317. |
Wang J J, Han Z, Chen S Y, et al. Liquid sunshine methanol[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317. | |
11 | Hussam W K, Barhoumi E M, Abdul-Niby M, et al. Techno-economic analysis and optimization of hydrogen production from renewable hybrid energy systems: shagaya renewable power plant-Kuwait[J]. International Journal of Hydrogen Energy, 2024, 58: 56-68. |
12 | Gallo M A, García Clúa J G. Sizing and analytical optimization of an alkaline water electrolyzer powered by a grid-assisted wind turbine to minimize grid power exchange[J]. Renewable Energy, 2023, 216: 118990. |
13 | 李永毅, 王子晗, 张磊, 等. 风-光-氢-燃气轮机一体化氢电耦合系统容量配置优化[J]. 中国电机工程学报, 2025, 45(2): 489-502. |
Li Y Y, Wang Z H, Zhang L, et al. Capacity configuration optimization of integrated wind-photovoltaic-hydrogen-gas turbine hydrogen-electricity coupling system[J]. Proceedings of the CSEE, 2025, 45(2): 489-502. | |
14 | Li R Z, Jin X M, Yang P, et al. Large-scale offshore wind integration by wind-thermal-electrolysis-battery (WTEB) power system: a case study of Yangxi, China[J]. International Journal of Hydrogen Energy, 2024, 52: 467-484. |
15 | 袁铁江, 高玲玉, 谢永胜, 等. 基于氢能的风-火耦合多能系统设计与综合评估[J]. 电力自动化设备, 2021, 41(10): 227-233, 255. |
Yuan T J, Gao L Y, Xie Y S, et al. Design and comprehensive evaluation of wind-thermal power coupling multi-energy system based on hydrogen energy[J]. Electric Power Automation Equipment, 2021, 41(10): 227-233, 255. | |
16 | 邵桂萍, 许洪华. 可再生能源综合系统现状与未来发展趋势研究[J]. 太阳能, 2024(7): 127-132. |
Shao G P, Xu H H. Research on present situation and future development trend of renewable energy integrated system[J]. Solar Energy, 2024(7): 127-132. | |
17 | 钱宇, 陈耀熙, 史晓斐, 等. 太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J]. 化工学报, 2022,73(5): 2101-2110. |
Qian Y, Chen Y X, Shi X F, et al. Big data analysis of solar energy fluctuation characteristics and integration of wind-photovoltaic to hydrogen system[J]. CIESC Journal, 2022, 73(5): 2101-2110. | |
18 | Han Y L, Shi K N, Qian Y, et al. Design and operational optimization of a methanol-integrated wind-solar power generation system[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109992. |
19 | Ulleberg Ø. Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. International Journal of Hydrogen Energy, 2003, 28(1): 21-33. |
20 | 黄启帆, 陈洁, 曹喜民, 等. 基于碱性电解槽和质子交换膜电解槽协同制氢的风光互补制氢系统优化[J]. 电力自动化设备, 2023, 43(12): 168-174. |
Huang Q F, Chen J, Cao X M, et al. Optimization of wind-photovoltaic complementation hydrogen production system based on synergistic hydrogen production by alkaline electrolyzer and proton exchange membrane electrolyzer[J]. Electric Power Automation Equipment, 2023, 43(12): 168-174. | |
21 | Yang B, Zhang Z J, Su S, et al. Optimal scheduling of wind-photovoltaic-hydrogen system with alkaline and proton exchange membrane electrolyzer[J]. Journal of Power Sources, 2024, 614: 235010. |
22 | Al-Ghussain L, Ahmad A D, Abubaker A M, et al. Techno-economic feasibility of hybrid PV/wind/battery/thermal storage trigeneration system: toward 100% energy independency and green hydrogen production[J]. Energy Reports, 2023, 9: 752-772. |
23 | 广东省能源局. 广东省能源局关于印发广东省促进新型储能电站发展若干措施的通知[EB/OL]. [2023-06-05]. . |
Guangdong Provincial Energy Bureau. Notice of Guangdong Provincial Energy Bureau on printing and distributing several measures to promote the development of new energy storage power stations[EB/OL]. [2023-06-05]. . | |
24 | 林旗力, 戚宏勋, 黄晶晶, 等. 碱性-质子交换膜水电解复合制氢平准化成本分析[J]. 储能科学与技术, 2023, 12(11): 3572-3580. |
Lin Q L, Qi H X, Huang J J, et al. Levelized cost of combined hydrogen production by water electrolysis with alkaline-proton exchange membrane[J]. Energy Storage Science and Technology, 2023, 12(11): 3572-3580. | |
25 | 广东省能源局, 国家能源局南方监管局. 关于2024年电力市场交易有关事项的通知[EB/OL]. [2023-11-21]. . |
Guangdong Provincial Energy Administration, Southern Regulatory Bureau of the National Energy Administration. Notice on matters related to the 2024 electricity market transactions[EB/OL]. [2023-11-21]. . | |
26 | 辛禾. 考虑多能互补的清洁能源协同优化调度及效益均衡研究[D]. 北京:华北电力大学, 2019. |
Xin H. Study on collaborative optimal scheduling and benefit balance of clean energy considering multi-energy complementarity[D]. Beijing: North China Electric Power University, 2019. | |
27 | Gu Y, Wang D F, Chen Q Q, et al. Techno-economic analysis of green methanol plant with optimal design of renewable hydrogen production: a case study in China[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5085-5100. |
28 | 杨成玉, 马军, 李广玉, 等. 大型碱性电解水制氢装备多对一的应用与实践[J]. 太阳能, 2022(5):103-114. |
Yang C Y, Ma J, Li G Y. Application and practice of many-to-one large-scale alkaline water electrolysis hydrogen production equipment[J]. Solar Energy, 2022(5): 103-114. | |
29 | Taibi E, Miranda R, Carmo M, et al. Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5℃ Climate Goal[M]. International Renewable Energy Agency,2020. |
30 | Reksten A H, Thomassen M S, Møller-Holst S, et al. Projecting the future cost of PEM and alkaline water electrolysers; a CAPEX model including electrolyser plant size and technology development[J]. International Journal of Hydrogen Energy, 2022, 47(90): 38106-38113. |
31 | Yang B W, Zhang R F, Shao Z F, et al. The economic analysis for hydrogen production cost towards electrolyzer technologies: current and future competitiveness[J]. International Journal of Hydrogen Energy, 2023, 48(37): 13767-13779. |
32 | Agency I E. World Energy Outlook 2023[M]. Paris: OECD, 2023. |
[1] | 万俊, 宋佳芮, 范春煌, 魏乐乐, 聂依娜, 刘琳. 高效空穴转移助力光催化碱性甲醇-水溶液制氢[J]. 化工学报, 2025, 76(3): 1064-1075. |
[2] | 高波, 王佳琪, 刘志亮, 赵玄烈, 葛坤. 海上风电制氢系统建模及热力学与经济学分析[J]. 化工学报, 2025, 76(3): 1207-1220. |
[3] | 张珂, 任维杰, 王梦娜, 范凯锋, 常丽萍, 李佳斌, 马涛, 田晋平. Bunsen反应产物在微通道中的液-液两相混合特性[J]. 化工学报, 2025, 76(2): 623-636. |
[4] | 白谨豪, 管小平, 杨宁. 压滤式水电解槽乳突板内的流动特性分析与优化[J]. 化工学报, 2025, 76(2): 584-595. |
[5] | 钟晓航, 许卫, 张文, 许莉, 王宇新. 碱性水电解制氢中铁杂质的影响研究进展[J]. 化工学报, 2025, 76(2): 519-531. |
[6] | 殷梦凡, 王倩, 郑涛, 姬奎, 王绍贵, 郭辉, 林志强, 张睿, 孙晖, 刘海燕, 刘植昌, 徐春明, 孟祥海, 王月平. 可再生能源电解水制氢-低温低压合成氨万吨级工业示范流程设计[J]. 化工学报, 2025, 76(2): 825-834. |
[7] | 罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093. |
[8] | 王军锋, 张俊杰, 张伟, 王家乐, 双舒炎, 张亚栋. 液相放电等离子体分解甲醇制氢:电极配置的优化[J]. 化工学报, 2024, 75(9): 3277-3286. |
[9] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
[10] | 丁家琦, 刘海涛, 赵普, 朱香凝, 王晓放, 谢蓉. 煤炭超临界水制氢反应器内多相流场智能滚动预测研究[J]. 化工学报, 2024, 75(8): 2886-2896. |
[11] | 王沛, 段睿明, 张广儒, 金万勤. 光热驱动的膜分离生物甲烷制氢过程建模与仿真分析[J]. 化工学报, 2024, 75(3): 967-973. |
[12] | 刘志鹏, 赵长颖, 吴睿, 张智昊. 基于水电解制氢的梯度多孔传输层中气液流动可视化实验研究[J]. 化工学报, 2024, 75(2): 520-530. |
[13] | 孙冰颜, 王海清, 张玉涛, 汪肆杰. 非恒定故障率安全联锁系统执行机构的时变竞争失效研究[J]. 化工学报, 2024, 75(12): 4646-4653. |
[14] | 马浩天, 荆体瑞, 刘程程, 玉散·吐拉甫, 张喆, 王一迪, 王庆宏, 陈春茂, 徐春明. Sr改性LaFeO3用于甲烷化学链重整的还原性能与动力学研究[J]. 化工学报, 2024, 75(12): 4532-4546. |
[15] | 李宇明, 徐砚文, 刘红宇, 马丽娜, 王雅君. 镍基磷化物的合成及其在电解水制氢中的应用[J]. 化工学报, 2024, 75(12): 4385-4402. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 204
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 200
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||