化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 300-308.DOI: 10.11949/0438-1157.20240331
吴德威(), 汪郑鹏, 周玥, 李晓宁, 陈招, 李卓, 刘成伟, 李学刚, 肖文德(
)
收稿日期:
2024-03-25
修回日期:
2024-04-12
出版日期:
2024-12-25
发布日期:
2024-12-17
通讯作者:
肖文德
作者简介:
吴德威(1998—),男,硕士研究生,leekey_s@sjtu.edu.cn
Dewei WU(), Zhengpeng WANG, Yue ZHOU, Xiaoning LI, Zhao CHEN, Zhuo LI, Chengwei LIU, Xuegang LI, Wende XIAO(
)
Received:
2024-03-25
Revised:
2024-04-12
Online:
2024-12-25
Published:
2024-12-17
Contact:
Wende XIAO
摘要:
以导电炭黑为碳基底,以SiH4为硅源前体,采用固定床CVD反应器制备锂离子电池硅碳复合负极材料。分别考察了SiH4单独沉积及其与C2H4共沉积两种方案,并研究了以C2H4为碳源碳包覆对样品储锂性能的影响。实验结果表明,SiH4单独沉积会形成尺寸较小的Si纳米颗粒,且随沉积温度提高,Si的负载量降低。SiH4和C2H4共沉积过程会形成C@SiC复合结构,且随C2H4比例增加,单质硅的结晶度和晶粒尺寸降低。在硅碳共沉积和碳包覆条件下,则会形成Si、SiC和C三种晶体共存复合结构,有助于提高样品材料的循环性能,但比容量明显下降。
中图分类号:
吴德威, 汪郑鹏, 周玥, 李晓宁, 陈招, 李卓, 刘成伟, 李学刚, 肖文德. 固定床法制备锂离子电池硅碳负极材料及其储锂性能研究[J]. 化工学报, 2024, 75(S1): 300-308.
Dewei WU, Zhengpeng WANG, Yue ZHOU, Xiaoning LI, Zhao CHEN, Zhuo LI, Chengwei LIU, Xuegang LI, Wende XIAO. Preparation of silicon carbon anode for lithium-ion batteries by fixed bed and lithium storage properties[J]. CIESC Journal, 2024, 75(S1): 300-308.
图8 气体出口浓度及C@SiC@C材料的TEM Mapping元素分析、TEM衍射图和晶面间距分析
Fig.8 Curve of gas concentrations and TEM Mapping image, TEM diffraction patterns and crystal plane spacing analysis of C@Si@C material
图12 不同SiH4和C2H4比例C@SiC材料的电池容量和首效曲线(a)以及电池循环曲线(b)
Fig.12 Curve of initial discharge specific capacity and initial coulomb efficiency (a) and curve of battery cycles of C@SiC at different proportions of SiH4 and C2H4 (b)
图13 不同SiH4浓度下C@SiC材料的电池容量和首效以及电池循环曲线
Fig.13 Curve of initial discharge specific capacity and initial coulomb efficiency and curve of battery cycles of C@SiC at different concentrations of SiH4
1 | Azuma H, Imoto H, Yamada S, et al. Advanced carbon anode materials for lithium ion cells[J]. Journal of Power Sources, 1999, 81: 1-7. |
2 | Zhang S S. Dual-carbon lithium-ion capacitors: principle, materials, and technologies[J]. Batteries & Supercaps, 2020, 3(11): 1137-1146. |
3 | Park C M, Kim J H, Kim H, et al. Li-alloy based anode materials for Li secondary batteries[J]. Chemical Society Reviews, 2010, 39(8): 3115-3141. |
4 | Ma D L, Cao Z Y, Hu A M. Si-based anode materials for Li-ion batteries: a mini review[J]. Nano-Micro Letters, 2014, 6(4): 347-358. |
5 | Sourice J, Bordes A, Boulineau A, et al. Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries[J]. Journal of Power Sources, 2016, 328: 527-535. |
6 | Kim J S, Pfleging W, Kohler R, et al. Three-dimensional silicon/carbon core-shell electrode as an anode material for lithium-ion batteries[J]. Journal of Power Sources, 2015, 279: 13-20. |
7 | Su H P, Barragan A A, Geng L X, et al. Colloidal synthesis of silicon-carbon composite material for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2017, 56(36): 10780-10785. |
8 | Xiao X C, Zhou W D, Kim Y, et al. Regulated breathing effect of silicon negative electrode for dramatically enhanced performance of Li-ion battery[J]. Advanced Functional Materials, 2015, 25(9): 1426-1433. |
9 | Li B, Yang S B, Li S M, et al. From commercial sponge toward 3D graphene-silicon networks for superior lithium storage[J]. Advanced Energy Materials, 2015, 5(15): 1500289. |
10 | Jeong M G, Du H L, Islam M, et al. Self-rearrangement of silicon nanoparticles embedded in micro-carbon sphere framework for high-energy and long-life lithium-ion batteries[J]. Nano Letters, 2017, 17(9): 5600-5606. |
11 | Zhao J, Lu S M, Hu L Y, et al. Nano Si preparation by constant cell voltage electrolysis of FFC-Cambridge process in molten CaCl2 [J]. Journal of Energy Chemistry, 2013, 22(6): 819-825. |
12 | Zhu J, Gladden C, Liu N, et al. Nanoporous silicon networks as anodes for lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(2): 440-443. |
13 | Sun Y M, Lee H W, Seh Z W, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, 1(1): 15008. |
14 | He X W, Mu X W, Wang Y G, et al. Fast and scalable complete chemical prelithiation strategy for Si/C anodes enabling high-performance Li x Si-S full cells[J]. ACS Applied Energy Materials, 2023, 6(12): 6790-6796. |
15 | You S Z, Tan H T, Wei L C, et al. Design strategies of Si/C composite anode for lithium-ion batteries[J]. Chemistry-A European Journal, 2021, 27(48): 12237-12256. |
16 | Yang H, Lin S Y, Cheng A, et al. Recent advances in ball-milling-based silicon anodes for lithium-ion batteries[J]. Energies, 2023, 16(7): 3099. |
17 | Fu L, Liu H, Li C, et al. Electrode materials for lithium secondary batteries prepared by sol-gel methods[J]. Progress in Materials Science, 2005, 50(7): 881-928. |
18 | Niu C J, Meng J S, Wang X P, et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis[J]. Nature Communications, 2015, 6: 7402. |
19 | Yan Z, Guo J C. High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction[J]. Nano Energy, 2019, 63: 103845. |
20 | Entwistle J, Rennie A, Patwardhan S. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond[J]. Journal of Materials Chemistry A, 2018, 6(38): 18344-18356. |
21 | Magasinski A, Dixon P, Hertzberg B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature Materials, 2010, 9(4): 353-358. |
22 | Ko M, Chae S, Ma J, et al. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries[J]. Nature Energy, 2016, 1(9): 16113. |
23 | Chen B J, Chen L, Zu L H, et al. Zero-strain high-capacity silicon/carbon anode enabled by a MOF-derived space-confined single-atom catalytic strategy for lithium-ion batteries[J]. Advanced Materials, 2022, 34(21): 2200894. |
24 | Sung J, Kim N, Ma J, et al. Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack[J]. Nature Energy, 2021, 6: 1164-1175. |
[1] | 赵昂然, 韩永强, 王志鹏, 李鹏飞, 许亚伟, 佟会玲. 常温条件下赤泥同时脱硫脱硝实验研究[J]. 化工学报, 2024, 75(S1): 276-282. |
[2] | 唐溯, 郑子鏖, 魏翰泽, 许晓玲, 翟晓强. PMMA/PEG600/CNT复合定型相变材料制备与导热强化[J]. 化工学报, 2024, 75(S1): 309-320. |
[3] | 吴学红, 韦新, 侯加文, 吕财, 刘勇, 刘鹤, 常志娟. 热解法制备碳纳米管及其在散热涂层中的应用研究[J]. 化工学报, 2024, 75(9): 3360-3368. |
[4] | 王舒英, 左涛, 石志伟, 范小明, 张卫新. 阳离子交换树脂基介孔石墨化碳合成与储钠性能[J]. 化工学报, 2024, 75(9): 3338-3347. |
[5] | 罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093. |
[6] | 彭丹, 卢俊杰, 倪文静, 杨媛, 汪靖伦. 高电压钴酸锂电池电解液研究进展[J]. 化工学报, 2024, 75(9): 3028-3040. |
[7] | 江洋, 彭长宏, 陈伟, 周豪, 马忠彬, 李洪博, 邱在容, 张国鹏, 周康根. 废旧磷酸铁锂粉料综合回收中试研究[J]. 化工学报, 2024, 75(6): 2353-2361. |
[8] | 王天闻, 闫肃, 赵梦园, 杨天让, 刘建国. 固体氧化物电池空气电极铬中毒机理及抗铬性能研究进展[J]. 化工学报, 2024, 75(6): 2091-2108. |
[9] | 裴欣哲, 孙朱行, 林钰翔, 张朝阳, 钱勇, 吕兴才. 电催化分解液氨阳极材料的研究[J]. 化工学报, 2024, 75(5): 1843-1854. |
[10] | 张林, 张子怡, 李勇, 童少平. Fe-MOF-74前体制备铁-碳/氮复合材料及其活化过硫酸盐性能[J]. 化工学报, 2024, 75(5): 1882-1889. |
[11] | 李云璇, 刘新悦, 陈熙, 刘文, 周明月, 蓝兴英. 基于固液氧化还原靶向反应的能量存储技术:材料、器件及动力学[J]. 化工学报, 2024, 75(4): 1222-1240. |
[12] | 贾旭东, 杨博龙, 程前, 李雪丽, 向中华. 分步负载金属法制备铁钴双金属位点高效氧还原电催化剂[J]. 化工学报, 2024, 75(4): 1578-1593. |
[13] | 严孝清, 赵瑛, 张宇哲, 欧鸿辉, 黄起中, 胡华贵, 杨贵东. 五重孪晶铜纳米线@聚吡咯制备及其电催化硝酸盐还原制氨[J]. 化工学报, 2024, 75(4): 1519-1532. |
[14] | 吴希, 孙博, 刘银东, 齐传磊, 陈凯毅, 王路海, 许崇, 李永峰. 钠离子电池沥青基碳负极材料制备技术研究进展[J]. 化工学报, 2024, 75(4): 1270-1283. |
[15] | 孙铭泽, 黄鹤来, 牛志强. 铂基氧还原催化剂:从单晶电极到拓展表面纳米材料[J]. 化工学报, 2024, 75(4): 1256-1269. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 97
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 143
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||