化工学报

• •    

Z型通道印刷电路板式换热器中S-CO2热工水力分析与结构优化

邢刚1(), 杨涵2, 王天堃1, 赵香龙3, 王志得3, 乔永辉2()   

  1. 1.国电电力发展股份有限公司,北京 100101
    2.西北工业大学动力与能源学院,陕西 西安 710129
    3.北京低碳清洁能源研究院,北京 102211
  • 收稿日期:2025-12-30 修回日期:2026-01-14 出版日期:2026-02-02
  • 通讯作者: 乔永辉
  • 作者简介:邢刚(1980—),男,博士,高级工程师,gang.xing@chnenergy.com.cn
  • 基金资助:
    国家自然科学基金项目(52406195)

Thermohydraulic analysis and structural optimization of a Z-shaped printed circuit heat exchanger for supercritical CO2

Gang XING1(), Han YANG2, Tiankun WANG1, Xianglong ZHAO3, Zhide WANG3, Yonghui QIAO2()   

  1. 1.GD Power Development Co. , Ltd. , Beijing 100101, China
    2.School of Power and Energy, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, China
    3.National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China
  • Received:2025-12-30 Revised:2026-01-14 Online:2026-02-02
  • Contact: Yonghui QIAO

摘要:

印刷电路板式换热器(PCHE)因其扩散焊接结构的高耐压能力及微通道结构的优异紧凑性与传热性能,被认为是满足超临界二氧化碳(S-CO2)布雷顿循环抽水式热储能发电(PTES)系统中高温、高压和高效率要求的理想回热器形式。基于构建的S-CO2布雷顿循环PTES热机模型,本文通过数值模拟研究了通道截面形状对直通型PCHE热工水力性能的影响,并将直通型PCHE与Z型PCHE性能对比,结果显示Z型PCHE综合性能更优。为进一步提升Z型PCHE的综合性能,本文基于单因子分析探讨了通道直径(A)、通道节距(B)和通道转角(C)对其性能的影响。以热通道Nusselt数(Nu)、范宁摩擦因子(f)和综合性能(PEC)为评价指标,通过正交试验结合极差分析与方差分析确定各因素显著性水平,并借助熵权法获取综合性能最优参数组合。正交试验的极差分析与方差分析给出的最优参数组合为:A=1 mm、B=10 mm、C=90°,此时对应Nuf以及PEC分别为47.950、0.04380和136.029。最后,不同入口Reynolds数及热通道入口温度条件下验证表明,优化后的Z型PCHE在多工况下性能稳定。本文提出的分析框架与优化方法可为PCHE几何设计与性能提升提供参考。

关键词: 印刷电路板式换热器, 超临界二氧化碳, 布雷顿循环抽水式热储能发电, 热工水力, 正交试验, 熵权法

Abstract:

Printed circuit heat exchangers (PCHE), with high pressure resistance afforded by diffusion-bonded structures and superior compactness and heat transfer performance enabled by microchannel designs, are regarded as ideal recuperators for supercritical CO2 (S-CO2) Brayton-cycle pumped thermal energy storage (PTES) systems, which require high temperature, high pressure, and high efficiency. Based on a developed S-CO2 Brayton-cycle PTES thermal model, this study investigates the effects of channel cross-sectional shape on the thermo-hydraulic performance of straight-through PCHE using numerical simulations, and compares the performance of straight-through and Z-type PCHE, showing that the Z-type configuration exhibits superior overall performance. To further enhance the overall performance of Z-type PCHE, this study conducts a single-factor analysis to examine the effects of three geometric parameters—channel diameter (A), channel pitch (B), and channel bend angle (C). The Nusselt number (Nu), Fanning friction factor (f), and performance evaluation criterion (PEC) of the hot channels are adopted as evaluation metrics. Orthogonal experiments combined with range analysis and analysis of variance are used to determine the significance levels of the factors, and the entropy-weight method is employed to identify the optimal parameter combination. The optimal parameter combination obtained from the orthogonal experiment through range and variance analyses is A = 1 mm, B = 10 mm, and C = 90°, corresponding to Nu, f, and PEC values of 47.950, 0.04380, and 136.029, respectively. Finally, validation under varying inlet Reynolds numbers and hot-channel inlet temperatures demonstrates that the optimized Z-type PCHE maintains stable performance across multiple operating conditions. The proposed analytical framework and optimization methodology provide valuable guidance for the geometric design and performance enhancement of PCHE.

Key words: printed circuit heat exchanger, supercritical CO2, Brayton-cycle pumped thermal energy storage, thermo-hydraulic, orthogonal tests, entropy weight method

中图分类号: