• •
邢刚1(
), 杨涵2, 王天堃1, 赵香龙3, 王志得3, 乔永辉2(
)
收稿日期:2025-12-30
修回日期:2026-01-14
出版日期:2026-02-02
通讯作者:
乔永辉
作者简介:邢刚(1980—),男,博士,高级工程师,gang.xing@chnenergy.com.cn
基金资助:
Gang XING1(
), Han YANG2, Tiankun WANG1, Xianglong ZHAO3, Zhide WANG3, Yonghui QIAO2(
)
Received:2025-12-30
Revised:2026-01-14
Online:2026-02-02
Contact:
Yonghui QIAO
摘要:
印刷电路板式换热器(PCHE)因其扩散焊接结构的高耐压能力及微通道结构的优异紧凑性与传热性能,被认为是满足超临界二氧化碳(S-CO2)布雷顿循环抽水式热储能发电(PTES)系统中高温、高压和高效率要求的理想回热器形式。基于构建的S-CO2布雷顿循环PTES热机模型,本文通过数值模拟研究了通道截面形状对直通型PCHE热工水力性能的影响,并将直通型PCHE与Z型PCHE性能对比,结果显示Z型PCHE综合性能更优。为进一步提升Z型PCHE的综合性能,本文基于单因子分析探讨了通道直径(A)、通道节距(B)和通道转角(C)对其性能的影响。以热通道Nusselt数(Nu)、范宁摩擦因子(f)和综合性能(PEC)为评价指标,通过正交试验结合极差分析与方差分析确定各因素显著性水平,并借助熵权法获取综合性能最优参数组合。正交试验的极差分析与方差分析给出的最优参数组合为:A=1 mm、B=10 mm、C=90°,此时对应Nu、f以及PEC分别为47.950、0.04380和136.029。最后,不同入口Reynolds数及热通道入口温度条件下验证表明,优化后的Z型PCHE在多工况下性能稳定。本文提出的分析框架与优化方法可为PCHE几何设计与性能提升提供参考。
中图分类号:
邢刚, 杨涵, 王天堃, 赵香龙, 王志得, 乔永辉. Z型通道印刷电路板式换热器中S-CO2热工水力分析与结构优化[J]. 化工学报, DOI: 10.11949/0438-1157.20251480.
Gang XING, Han YANG, Tiankun WANG, Xianglong ZHAO, Zhide WANG, Yonghui QIAO. Thermohydraulic analysis and structural optimization of a Z-shaped printed circuit heat exchanger for supercritical CO2[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251480.
| 截面形状 | Nuh | Nuc | fh | fc | PECh | PECc |
|---|---|---|---|---|---|---|
| 半圆 | 22.4496 | 15.2544 | 0.00954 | 0.01126 | 105.839 | 68.064 |
| 矩形 | 21.8229 | 14.8405 | 0.00929 | 0.01074 | 103.812 | 67.254 |
| 梯形 | 21.1416 | 14.2859 | 0.00897 | 0.01031 | 101.757 | 65.624 |
| 三角形 | 20.4123 | 13.6170 | 0.00879 | 0.00992 | 98.909 | 63.377 |
表1 不同截面形状对应的热工水力性能值
Table 1 Thermal-Hydraulic Performance Values Corresponding to Different Cross-sectional Shapes
| 截面形状 | Nuh | Nuc | fh | fc | PECh | PECc |
|---|---|---|---|---|---|---|
| 半圆 | 22.4496 | 15.2544 | 0.00954 | 0.01126 | 105.839 | 68.064 |
| 矩形 | 21.8229 | 14.8405 | 0.00929 | 0.01074 | 103.812 | 67.254 |
| 梯形 | 21.1416 | 14.2859 | 0.00897 | 0.01031 | 101.757 | 65.624 |
| 三角形 | 20.4123 | 13.6170 | 0.00879 | 0.00992 | 98.909 | 63.377 |
| 通道类型 | Nuh | Nuc | fh | fc | PECh | PECc |
|---|---|---|---|---|---|---|
| 直通型 | 22.4496 | 15.2544 | 0.00954 | 0.01126 | 105.839 | 68.064 |
| Z型 | 30.7585 | 18.8999 | 0.01829 | 0.02041 | 116.742 | 69.157 |
表2 不同通道类型对应的热工水力性能值
Table 2 Thermal–hydraulic performance values corresponding to different channel types
| 通道类型 | Nuh | Nuc | fh | fc | PECh | PECc |
|---|---|---|---|---|---|---|
| 直通型 | 22.4496 | 15.2544 | 0.00954 | 0.01126 | 105.839 | 68.064 |
| Z型 | 30.7585 | 18.8999 | 0.01829 | 0.02041 | 116.742 | 69.157 |
| 通道截面方向 | Nuh | fh | PECh |
|---|---|---|---|
| 方 | 30.7585 | 0.01829 | 116.742 |
| 方 | 30.7275 | 0.01832 | 116.560 |
| 方 | 30.8946 | 0.01827 | 117.301 |
| 方 | 30.8587 | 0.01828 | 117.143 |
表3 不同通道截面放置方式对应热工水力性能值
Table 3 Thermal–hydraulic performance values corresponding to different channel cross-sectional placement configurations
| 通道截面方向 | Nuh | fh | PECh |
|---|---|---|---|
| 方 | 30.7585 | 0.01829 | 116.742 |
| 方 | 30.7275 | 0.01832 | 116.560 |
| 方 | 30.8946 | 0.01827 | 117.301 |
| 方 | 30.8587 | 0.01828 | 117.143 |
| 水平 | 因素 | ||
|---|---|---|---|
| A/mm | B/mm | C/° | |
| 1 | 1 | 10 | 90 |
| 2 | 1.25 | 15 | 110 |
| 3 | 1.5 | 20 | 130 |
| 4 | 1.75 | 25 | 150 |
| 5 | 2 | 30 | 170 |
表4 正交试验因素水平表
Table 4 Orthogonal test factor level table
| 水平 | 因素 | ||
|---|---|---|---|
| A/mm | B/mm | C/° | |
| 1 | 1 | 10 | 90 |
| 2 | 1.25 | 15 | 110 |
| 3 | 1.5 | 20 | 130 |
| 4 | 1.75 | 25 | 150 |
| 5 | 2 | 30 | 170 |
| 试验号 | A/mm | B/mm | C/° | Nu | f | PEC |
|---|---|---|---|---|---|---|
| 1 | 1 | 10 | 90 | 47.951 | 0.0438 | 136.029 |
| 2 | 1 | 15 | 110 | 37.382 | 0.0249 | 128.027 |
| 3 | 1 | 20 | 130 | 30.380 | 0.0160 | 120.455 |
| 4 | 1 | 25 | 150 | 27.468 | 0.0119 | 120.168 |
| 5 | 1 | 30 | 170 | 24.369 | 0.0099 | 113.574 |
| 6 | 1.25 | 10 | 110 | 41.670 | 0.0361 | 126.124 |
| 7 | 1.25 | 15 | 130 | 29.674 | 0.0189 | 111.380 |
| 8 | 1.25 | 20 | 150 | 26.487 | 0.0123 | 114.699 |
| 9 | 1.25 | 25 | 170 | 22.279 | 0.0098 | 104.146 |
| 10 | 1.25 | 30 | 90 | 33.476 | 0.0225 | 118.620 |
| 11 | 1.5 | 10 | 130 | 37.997 | 0.0264 | 127.607 |
| 12 | 1.5 | 15 | 150 | 27.259 | 0.0133 | 115.162 |
| 13 | 1.5 | 20 | 170 | 21.983 | 0.0097 | 103.077 |
| 14 | 1.5 | 25 | 90 | 36.603 | 0.0298 | 118.075 |
| 15 | 1.5 | 30 | 110 | 32.434 | 0.0208 | 117.988 |
| 16 | 1.75 | 10 | 150 | 31.027 | 0.0164 | 122.056 |
| 17 | 1.75 | 15 | 170 | 21.755 | 0.0095 | 102.792 |
| 18 | 1.75 | 20 | 90 | 39.789 | 0.0378 | 118.562 |
| 19 | 1.75 | 25 | 110 | 34.906 | 0.0253 | 118.962 |
| 20 | 1.75 | 30 | 130 | 28.862 | 0.0165 | 113.399 |
| 21 | 2 | 10 | 170 | 21.972 | 0.0096 | 103.321 |
| 22 | 2 | 15 | 90 | 46.203 | 0.0473 | 127.716 |
| 23 | 2 | 20 | 110 | 37.964 | 0.0311 | 120.771 |
| 24 | 2 | 25 | 130 | 30.088 | 0.0188 | 113.057 |
| 25 | 2 | 30 | 150 | 24.761 | 0.0120 | 108.094 |
表5 正交试验方案及仿真结果
Table 5 Orthogonal test scheme and simulation results
| 试验号 | A/mm | B/mm | C/° | Nu | f | PEC |
|---|---|---|---|---|---|---|
| 1 | 1 | 10 | 90 | 47.951 | 0.0438 | 136.029 |
| 2 | 1 | 15 | 110 | 37.382 | 0.0249 | 128.027 |
| 3 | 1 | 20 | 130 | 30.380 | 0.0160 | 120.455 |
| 4 | 1 | 25 | 150 | 27.468 | 0.0119 | 120.168 |
| 5 | 1 | 30 | 170 | 24.369 | 0.0099 | 113.574 |
| 6 | 1.25 | 10 | 110 | 41.670 | 0.0361 | 126.124 |
| 7 | 1.25 | 15 | 130 | 29.674 | 0.0189 | 111.380 |
| 8 | 1.25 | 20 | 150 | 26.487 | 0.0123 | 114.699 |
| 9 | 1.25 | 25 | 170 | 22.279 | 0.0098 | 104.146 |
| 10 | 1.25 | 30 | 90 | 33.476 | 0.0225 | 118.620 |
| 11 | 1.5 | 10 | 130 | 37.997 | 0.0264 | 127.607 |
| 12 | 1.5 | 15 | 150 | 27.259 | 0.0133 | 115.162 |
| 13 | 1.5 | 20 | 170 | 21.983 | 0.0097 | 103.077 |
| 14 | 1.5 | 25 | 90 | 36.603 | 0.0298 | 118.075 |
| 15 | 1.5 | 30 | 110 | 32.434 | 0.0208 | 117.988 |
| 16 | 1.75 | 10 | 150 | 31.027 | 0.0164 | 122.056 |
| 17 | 1.75 | 15 | 170 | 21.755 | 0.0095 | 102.792 |
| 18 | 1.75 | 20 | 90 | 39.789 | 0.0378 | 118.562 |
| 19 | 1.75 | 25 | 110 | 34.906 | 0.0253 | 118.962 |
| 20 | 1.75 | 30 | 130 | 28.862 | 0.0165 | 113.399 |
| 21 | 2 | 10 | 170 | 21.972 | 0.0096 | 103.321 |
| 22 | 2 | 15 | 90 | 46.203 | 0.0473 | 127.716 |
| 23 | 2 | 20 | 110 | 37.964 | 0.0311 | 120.771 |
| 24 | 2 | 25 | 130 | 30.088 | 0.0188 | 113.057 |
| 25 | 2 | 30 | 150 | 24.761 | 0.0120 | 108.094 |
| 评价指标 | i | 极差 | |||||
|---|---|---|---|---|---|---|---|
| ki1 | ki2 | ki3 | ki4 | ki5 | Ri | ||
| Nu | A | 33.510 | 30.717 | 31.255 | 31.268 | 32.198 | 2.793 |
| B | 36.123 | 32.455 | 31.321 | 30.269 | 28.780 | 7.343 | |
| C | 40.804 | 36.871 | 31.401 | 27.401 | 22.472 | 18.332 | |
| f | A | 0.0213 | 0.0199 | 0.0200 | 0.0211 | 0.0238 | 0.0199 |
| B | 0.0265 | 0.0228 | 0.0214 | 0.0191 | 0.0163 | 0.0163 | |
| C | 0.0362 | 0.0276 | 0.0193 | 0.0132 | 0.0097 | 0.0097 | |
| PEC | A | 123.651 | 114.994 | 116.382 | 115.155 | 114.592 | 9.059 |
| B | 123.028 | 117.016 | 115.513 | 114.882 | 114.335 | 8.693 | |
| C | 123.801 | 122.375 | 117.180 | 116.036 | 105.382 | 18.419 | |
表6 Nu、f以及PEC极差分析表
Table 6 Range Analysis Table for Nu, f, and PEC
| 评价指标 | i | 极差 | |||||
|---|---|---|---|---|---|---|---|
| ki1 | ki2 | ki3 | ki4 | ki5 | Ri | ||
| Nu | A | 33.510 | 30.717 | 31.255 | 31.268 | 32.198 | 2.793 |
| B | 36.123 | 32.455 | 31.321 | 30.269 | 28.780 | 7.343 | |
| C | 40.804 | 36.871 | 31.401 | 27.401 | 22.472 | 18.332 | |
| f | A | 0.0213 | 0.0199 | 0.0200 | 0.0211 | 0.0238 | 0.0199 |
| B | 0.0265 | 0.0228 | 0.0214 | 0.0191 | 0.0163 | 0.0163 | |
| C | 0.0362 | 0.0276 | 0.0193 | 0.0132 | 0.0097 | 0.0097 | |
| PEC | A | 123.651 | 114.994 | 116.382 | 115.155 | 114.592 | 9.059 |
| B | 123.028 | 117.016 | 115.513 | 114.882 | 114.335 | 8.693 | |
| C | 123.801 | 122.375 | 117.180 | 116.036 | 105.382 | 18.419 | |
| 评价指标 | 因子 | SS | U | MS | F | 显著性 |
|---|---|---|---|---|---|---|
| Nu | A | 24.1708 | 4 | 6.0427 | 0.6991 | * |
| B | 154.0542 | 4 | 38.5136 | 4.4559 | *** | |
| C | 1066.6114 | 4 | 266.6529 | 30.8512 | **** | |
| 误差 | 103.7186 | 12 | 8.6432 | |||
| f | A | 0.000049 | 4 | 0.00001225 | 0.49 | * |
| B | 0.000291 | 4 | 0.00007275 | 2.91 | * | |
| C | 0.002337 | 4 | 0.00058425 | 23.37 | **** | |
| 误差 | 0.00030 | 12 | 0.000025 | |||
| PEC | A | 289.1725 | 4 | 72.2931 | 4.8236 | *** |
| B | 250.6063 | 4 | 62.6516 | 4.1803 | *** | |
| C | 1055.3034 | 4 | 263.8259 | 17.6033 | **** | |
| 误差 | 179.8477 | 12 | 14.9873 |
表7 Nu、f以及PEC方差分析表
Table 7 Analysis of Variance Table for Nu, f, and PEC
| 评价指标 | 因子 | SS | U | MS | F | 显著性 |
|---|---|---|---|---|---|---|
| Nu | A | 24.1708 | 4 | 6.0427 | 0.6991 | * |
| B | 154.0542 | 4 | 38.5136 | 4.4559 | *** | |
| C | 1066.6114 | 4 | 266.6529 | 30.8512 | **** | |
| 误差 | 103.7186 | 12 | 8.6432 | |||
| f | A | 0.000049 | 4 | 0.00001225 | 0.49 | * |
| B | 0.000291 | 4 | 0.00007275 | 2.91 | * | |
| C | 0.002337 | 4 | 0.00058425 | 23.37 | **** | |
| 误差 | 0.00030 | 12 | 0.000025 | |||
| PEC | A | 289.1725 | 4 | 72.2931 | 4.8236 | *** |
| B | 250.6063 | 4 | 62.6516 | 4.1803 | *** | |
| C | 1055.3034 | 4 | 263.8259 | 17.6033 | **** | |
| 误差 | 179.8477 | 12 | 14.9873 |
| 因子组合 | A/mm | B/mm | C/° | Nu | f | PEC |
|---|---|---|---|---|---|---|
| A1B1C1 | 1 | 10 | 90 | 47.950 | 0.04380 | 136.029 |
| A1B1C5 | 1 | 10 | 170 | 25.014 | 0.01035 | 114.786 |
| A2B5C5 | 1.25 | 30 | 170 | 23.709 | 0.00982 | 110.702 |
表8 各较优因子组合性能对比
Table 8 Performance comparison of each optimal factor combination
| 因子组合 | A/mm | B/mm | C/° | Nu | f | PEC |
|---|---|---|---|---|---|---|
| A1B1C1 | 1 | 10 | 90 | 47.950 | 0.04380 | 136.029 |
| A1B1C5 | 1 | 10 | 170 | 25.014 | 0.01035 | 114.786 |
| A2B5C5 | 1.25 | 30 | 170 | 23.709 | 0.00982 | 110.702 |
| [1] | Li S, Wu J B, Du X Z, et al. Study on heat transfer characteristics of supercritical CO2 printed circuit heat exchangers with different shape channels[J]. Thermal Science, 2024, 28(5 Part A): 3979-3994. |
| [2] | Kannan N, Vakeesan D. Solar energy for future world: - A review[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 1092-1105. |
| [3] | 邢刚, 杨涵, 乔永辉, 等. 卡诺电池分类与关键要素研究进展[J]. 材料导报, 2025: 0-29. |
| Xing G, Yang H, Qiao Y H, et al. Research progress on the classification and key factors of Carnot batteries[J]. Materials Reports, 2025: 0-29. | |
| [4] | Guo J Q, Li M J, He Y L, et al. A systematic review of supercritical carbon dioxide(S-CO2) power cycle for energy industries: Technologies, key issues, and potential prospects[J]. Energy Conversion and Management, 2022, 258: 115437. |
| [5] | Jin F, Chen D Q, Hu L, et al. Optimization of zigzag parameters in printed circuit heat exchanger for supercritical CO2 Brayton cycle based on multi-objective genetic algorithm[J]. Energy Conversion and Management, 2022, 270: 116243. |
| [6] | Yang X, Zhang Z H, Tian K, et al. Thermal-hydraulic performance of printed circuit heat exchangers with various channel shapes under rolling conditions[J]. Applied Thermal Engineering, 2024, 244: 122779. |
| [7] | Ma Y N, Hu P. Multi-objective optimization design and strength analysis of printed circuit heat exchangers for supercritical CO2 Brayton cycle[J]. Applied Thermal Engineering, 2024, 250: 123555. |
| [8] | Niu X J, Liu J Y, Yue G L, et al. Numerical study on the flow and heat transfer performance of SCO2/molten salt in Z-type printed circuit heat exchangers[J]. Applied Thermal Engineering, 2024, 247: 123015. |
| [9] | Ji Y X, Wang Z, Wang M X, et al. Experimental and numerical study on thermal hydraulic performance of trapezoidal printed circuit heat exchanger for supercritical CO2 brayton cycle[J]. Energies, 2022, 15(14): 4940. |
| [10] | Villada-Castillo D, Valencia-Ochoa G, Duarte-Forero J. Thermohydraulic and economic evaluation of a new design for printed circuit heat exchangers in supercritical CO2 brayton cycle[J]. Energies, 2023, 16(5): 2326. |
| [11] | Jin F, Yuan D W, Chen D Q, et al. Experimental study on cooling heat transfer performance of supercritical CO2 in zigzag printed circuit heat exchanger[J]. International Journal of Heat and Mass Transfer, 2023, 215: 124538. |
| [12] | 张义飞, 刘舫辰, 张双星, 等. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
| Zhang Y F, Liu F C, Zhang S X, et al. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide[J]. CIESC Journal, 2023, 74(S1): 183-190. | |
| [13] | Khoshvaght-Aliabadi M, Zahiri A H, Ahn H S, et al. Improving channel layouts in printed circuit heat exchangers for efficient supercritical carbon dioxide cooling[J]. International Journal of Thermal Sciences, 2025, 215: 109932. |
| [14] | 任冠宇, 张义飞, 李新泽, 等. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
| Ren G Y, Zhang Y F, Li X Z, et al. Numerical study on flow and heat transfer characteristics of airfoil printed circuit heat exchangers[J]. CIESC Journal, 2024, 75(S1): 108-117. | |
| [15] | Xi K, Zhao X, Xie Z H, et al. Thermal-hydraulic characteristics of carbon dioxide in printed circuit heat exchangers with staggered airfoil fins[J]. Processes, 2023, 11(8): 2244. |
| [16] | Raji A P, Ranganathan S, Stanislaus Arputharaj B, et al. Thermostructural analysis on airfoil fin printed circuit heat exchanger using supercritical CO2 [J]. Journal of Thermal Analysis and Calorimetry, 2024, 149(9): 4153-4177. |
| [17] | Wang D, Li J G, Pan K, et al. Investigation on the flow and heat transfer characteristics of supercritical CO2 in printed circuit heat exchanger with asymmetric airfoil fins[J]. Thermal Science, 2023, 27(6 Part A): 4565-4579. |
| [18] | Kuo G C, Xie J Y, Chueh C C. Numerical thermal–hydraulic analysis and multiobjective design optimization of a printed circuit heat exchanger with airfoil overlap fin channels[J]. Engineering Reports, 2024, 6(2): e12719. |
| [19] | Yang S, Zhao Z C, Zhang Y, et al. Effects of fin arrangements on thermal hydraulic performance of supercritical nitrogen in printed circuit heat exchanger[J]. Processes, 2021, 9(5): 861. |
| [20] | Jing Q, Xie Y H, Zhang D. Thermal hydraulic performance of printed circuit heat exchanger with various channel configurations and arc ribs for SCO2 Brayton cycle[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119272. |
| [21] | Saeed M, Kim M H. Thermal-hydraulic analysis of sinusoidal fin-based printed circuit heat exchangers for supercritical CO2 Brayton cycle[J]. Energy Conversion and Management, 2019, 193: 124-139. |
| [22] | Meshram A, Jaiswal A K, Khivsara S D, et al. Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications[J]. Applied Thermal Engineering, 2016, 109: 861-870. |
| [23] | Wang J, Yan X P, Boersma B J, et al. Numerical investigation on the Thermal-hydraulic performance of the modified channel supercritical CO2 printed circuit heat exchanger[J]. Applied Thermal Engineering, 2023, 221: 119678. |
| [24] | Ren Z, Zhao C R, Jiang P X, et al. Investigation on local convection heat transfer of supercritical CO2 during cooling in horizontal semicircular channels of printed circuit heat exchanger[J]. Applied Thermal Engineering, 2019, 157: 113697. |
| [25] | Zhao J X, Liu M Y, Fei J J, et al. Numerical investigation of convective heat transfer enhancement mechanism in printed circuit heat exchangers with transversely corrugated channels[J]. Applied Thermal Engineering, 2025, 278: 127026. |
| [26] | Qin S C, Zhang Y C, Jiang W C, et al. Structure optimization and design of zigzag mini-channel for printed circuit heat exchanger[J]. Applied Thermal Engineering, 2025, 262: 125207. |
| [27] | Cheng Y, Li Y X, Wang J H, et al. Multi-objective optimization of printed circuit heat exchanger used for hydrogen cooler by exergoeconomic method[J]. Energy, 2023, 262: 125455. |
| [28] | Liu S H, Gao C, Liu M Y, et al. An improved zigzag-type printed circuit heat exchanger for supercritical CO2 Brayton cycles[J]. Annals of Nuclear Energy, 2023, 183: 109653. |
| [29] | 杨涵, 刘宁豪, 高强, 等. 锂离子电池同心结构液冷板冷却性能分析及结构优化[J]. 西安交通大学学报, 2025, 59(3): 172-188. |
| Yang H, Liu N H, Gao Q, et al. Cooling performance analysis and structural optimization of concentric structure liquid cooling plate for lithium-ion batteries[J]. Journal of Xi'an Jiaotong University, 2025, 59(3): 172-188. | |
| [30] | Yang H, Liu N H, Gu M J, et al. Multi-objective parameter optimization of U-type air-cooled thermal management system based on a surrogate model[J]. International Journal of Thermal Sciences, 2025, 212: 109707. |
| [31] | Fan X, Meng C, Yang Y W, et al. Numerical optimization of the cooling effect of a bionic fishbone channel liquid cooling plate for a large prismatic lithium-ion battery pack with high discharge rate[J]. Journal of Energy Storage, 2023, 72: 108239. |
| [32] | Yang H, Liu N H, Gu M J, et al. Optimized design of novel serpentine channel liquid cooling plate structure for lithium-ion battery based on discrete continuous variables[J]. Applied Thermal Engineering, 2025, 264: 125502. |
| [33] | Katz A, Aakre S R, Anderson M H, et al. Experimental investigation of pressure drop and heat transfer in high temperature supercritical CO2 and helium in a printed-circuit heat exchanger[J]. International Journal of Heat and Mass Transfer, 2021, 171: 121089. |
| [34] | Wang T S, Chai X, Guan C R, et al. Experimental investigation on heat transfer of helium-xenon mixture in a straight-channel printed circuit heat exchanger[J]. International Journal of Heat and Mass Transfer, 2025, 252: 127504. |
| [1] | 密晓光, 孙国刚, 程昊, 张晓慧. 印刷电路板式天然气冷却器性能仿真模型和验证[J]. 化工学报, 2025, 76(S1): 426-434. |
| [2] | 丁宏鑫, 干文翔, 赵雍洋, 贾润泽, 康子祺, 赵玉隆, 向勇. X65钢焊接接头在超临界CO2相及富H2O相中的腐蚀机理研究[J]. 化工学报, 2025, 76(7): 3426-3435. |
| [3] | 吴罗长, 杨泽宇, 颜建国, 朱旭涛, 陈阳, 王子辰. 微小方形通道内近超临界压力二氧化碳流动换热特性实验研究[J]. 化工学报, 2025, 76(4): 1583-1594. |
| [4] | 产文, 余万, 王岗, 苏华山, 黄芬霞, 胡涛. 改进回热布局的Allam循环热力、经济性能分析和双目标优化[J]. 化工学报, 2025, 76(4): 1680-1692. |
| [5] | 宫政, 高秀鲁, 赵玲, 胡冬冬. 超临界CO2发泡PBAT/PLA复合材料及其形状记忆性能[J]. 化工学报, 2025, 76(2): 888-896. |
| [6] | 周晨阳, 商浩杰, 胡杨, 曹天航, 姚尔人, 席光. 集成余热回收的多压超临界CO2热泵储电系统热经济学特性研究[J]. 化工学报, 2025, 76(12): 6587-6600. |
| [7] | 王俊英, 金辉. 超临界CO2与石油烃溶解度参数的分子动力学研究[J]. 化工学报, 2025, 76(11): 5788-5798. |
| [8] | 钟绍庚, 张宏, 张荣刚, 任燕, 武卫东. 新型矩形印刷电路板式换热器的数值研究[J]. 化工学报, 2025, 76(11): 5911-5922. |
| [9] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
| [10] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
| [11] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
| [12] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
| [13] | 李子扬, 郑楠, 方嘉宾, 魏进家. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75(6): 2143-2156. |
| [14] | 朱芝, 许恒杰, 陈维, 毛文元, 邓强国, 孙雪剑. 超临界二氧化碳螺旋槽干气密封热流耦合润滑临界阻塞特性研究[J]. 化工学报, 2024, 75(2): 604-615. |
| [15] | 邵明成, 潘玉贵, 王增丽, 赵强. CO2/CH4混合物理论跨临界增压过程的热力性能研究[J]. 化工学报, 2024, 75(10): 3742-3751. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号