CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 2312-2319.DOI: 10.11949/0438-1157.20191391
• Energy and environmental engineering • Previous Articles Next Articles
Meng GONG1(),Yang FANG1,Wei CHEN1,Yingquan CHEN1,Qiang LU3,Haiping YANG1(),Hanping CHEN1,2
Received:
2019-11-15
Revised:
2020-02-23
Online:
2020-05-05
Published:
2020-05-05
Contact:
Haiping YANG
宫梦1(),方阳1,陈伟1,陈应泉1,陆强3,杨海平1(),陈汉平1,2
通讯作者:
杨海平
作者简介:
宫梦(1996—),女,硕士研究生,基金资助:
CLC Number:
Meng GONG, Yang FANG, Wei CHEN, Yingquan CHEN, Qiang LU, Haiping YANG, Hanping CHEN. Effect of cellulose composition on amino acids pyrolysis[J]. CIESC Journal, 2020, 71(5): 2312-2319.
宫梦, 方阳, 陈伟, 陈应泉, 陆强, 杨海平, 陈汉平. 纤维素组分对氨基酸热解的影响[J]. 化工学报, 2020, 71(5): 2312-2319.
Add to citation manager EndNote|Ris|BibTeX
1 | Adsul M G, Singhvi M S, Gaikaiwari S A, et al. Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass[J]. Bioresource Technology, 2011, 102(6): 4304-4312. |
2 | 覃伟中, 李强, 朱兵, 等. 生物炼制与石油炼制一体化——促进我国生物质能源发展的有效对策[J]. 化工学报, 2010, 61(7): 65-70. |
Qin W Z, Li Q, Zhu B, et al. Integration of biorefinery and oil refinery: an effective way of promoting development of biomass energy in China[J]. CIESC Journal, 2010, 61(7): 65-70. | |
3 | Yang Y, Zhang P, Zhang W, et al. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China[J]. Renewable & Sustainable Energy Reviews, 2010, 14(9): 3050-3058. |
4 | Lange J P. Lignocellulose conversion: an introduction to chemistry, process and economics[J]. Biofuels Bioproducts & Biorefining, 2010, 1(1): 39-48. |
5 | 朱锡锋. 生物质热解液化技术研究与发展趋势[J]. 新能源进展, 2013, 1(1): 32-37. |
Zhu X F. Research development of biomass fast pyrolysis[J]. Advances in New and Renewable Energy, 2013, 1(1): 32-37. | |
6 | Laskar D D, Yang B, Wang H, et al. Pathways for biomass-derived lignin to hydrocarbon fuels[J]. Biofuels Bioproducts & Biorefining, 2013, 7(5): 602-626. |
7 | Vanholme B, Desmet T, Ronsse F, et al. Towards a carbon-negative sustainable bio-based economy[J]. Front Plant Sci., 2013, 4: 1-17. |
8 | 王芸, 邵珊珊, 张会岩, 等. 生物质模化物催化热解制取烯烃和芳香烃[J]. 化工学报, 2015, 66(8): 276-282. |
Wang Y, Shao S S, Zhang H Y, et al. Catalytic pyrolysis of biomass model compounds to olefins and aromatic hydrocarbons[J]. CIESC Journal, 2015, 66(8): 276-282. | |
9 | 张秀霞, 周志军, 周俊虎, 等. 含氮焦炭异相还原NO反应机理的密度泛函理论研究[J]. 化工学报, 2011, 62(4): 166-172. |
Zhang X X, Zhou Z J, Zhou J H, et al. Density functional theoretical study of heterogeneous reduction mechanism of NO on nitrogen-containing char surface[J]. CIESC Journal, 2011, 62(4): 166-172. | |
10 | Tsubouchi N, Ohtsuka Y. Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N formation[J]. Fuel, 2002, 81(18): 2335-2342. |
11 | 赵聪, 阎志中, 杨颂, 等. 煤热解过程中氮元素迁移规律影响因素[J]. 应用化工, 2018, 47(4): 208-211. |
Zhao C, Yan Z Z, Yang S, et al. Affecting the migration of nitrogen elements during coal pyrolgsis[J]. Applied Chemical Industry, 2018, 47(4): 208-211. | |
12 | 赵宗彬, 李文, 李保庆. 矿物质对煤焦燃烧过程中NO释放规律的影响[J]. 化工学报, 2003, 54(1): 100-106. |
Zhao Z B, Li W, Li B Q. Effect of mineral matter on release of no during coal char combustion[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(1): 100-106. | |
13 | Chen W, Yang H, Chen Y, et al. Transformation of nitrogen and evolution of N-containing species during algae pyrolysis[J]. Environmental Science and Technology, 2017, 51(11), 6570-6579. |
14 | Chen H, Si Y, Chen Y, et al. NOx precursors from biomass pyrolysis: Distribution of amino acids in biomass and Tar-N during devolatilization using model compounds[J]. Fuel, 2017, 187: 367-375. |
15 | Ren Q, Zhao C, Chen X, et al. NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis: co-pyrolysis of amino acids and cellulose, hemicellulose and lignin[J]. Proceedings of the Combustion Institute, 2011, 33(2): 1715-1722. |
16 | 黎新. 谷氨酸热分解机理的研究[J]. 西南师范大学学报(自然科学版), 1999, 24(4): 438-442. |
Li X. Studies on thermolytic mechanism of glutamic acid[J].Journal of Southwest China Normal University (Natural Science Edition), 1999, 24(4): 438-442. | |
17 | Li J, Liu Y, Shi J, et al. The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG-FTIR[J]. Thermochimica Acta, 2007, 467(1): 20-29. |
18 | 郝菊芳, 郭吉兆, 谢复炜, 等. 葡萄糖对天冬酰胺裂解生成氢氰酸的影响机理[J]. 烟草科技, 2014, 58(1): 34-39. |
Hao J F, Guo J Z, Xie F W, et al. Influence mechanism of glucose on formation of hydrogen cyanide from asparagine pyrolysis[J]. Tobacco Chemistry, 2014, 58(1): 34-39. | |
19 | Hao J, Guo J, Xie F, et al. Correlation of hydrogen cyanide formation with 2, 5-diketopiperazine and nitrogen heterocyclic compounds from co-pyrolysis of glycine and glucose/fructose[J]. Energy & Fuels, 2013, 27(8): 4723-4728. |
20 | Bao X, Chen Z, Xie H. Density functional study on the mechanism of amadori rearrangement reaction[J]. Chinese Journal of Structral Chemistry, 2011, 30(6): 827-832. |
21 | Rozenberg M, Shoham G, Reva I, et al. A correlation between the proton stretching vibration red shift and the hydrogen bond length in polycrystalline amino acids and peptides[J]. Physical Chemistry Chemical Physics, 2005, 7(11): 2376-83. |
22 | Shipar M A H. DFT studies on fructose and glycine maillard reaction: formation of the heyns rearrangement products in the initial stage[J]. Journal of the Iranian Chemical Society, 2011, 8(2): 433-448. |
23 | Solís-Calero C, Ortega-Castro J, Hernández-Laguna A, et al. A DFT study of the Amadori rearrangement above a phosphatidylethanolamine surface: comparison to reactions in aqueous environment[J]. The Journal of Physical Chemistry C, 2013, 117(16): 8299-8309. |
24 | 龚千代, 刘亮, 田红, 等. 甘氨酸高温热解含氮产物生成机理及实验研究[J]. 西北大学学报(自然科学版), 2016, (5): 695-701. |
Gong Q D, Liu L, Tian H, et al. Theoretic and experiment study on nitrogen-containing products of glycine during high temperature pyrolysis[J]. Journal of Northwest University(Natural Science Edition), 2016, (5): 695-701. | |
25 | Wang S, Guo X, Liang T, et al. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies[J]. Bioresource Technology, 2012, 104: 722-728. |
26 | Zhang X, Li J, Yang W, et al. Formation mechanism of levoglucosan and formaldehyde during cellulose pyrolysis[J]. Energy & Fuels, 2011, 25(8): 3739-3746. |
27 | Kang P, Qin W, Fu Z Q, et al. Generation mechanism of NOx and N2O precursors (NH3 and HCN) from aspartic acid pyrolysis: a DFT study[J]. International Journal of Agricultual and Biological Engineering, 2016, 5(9): 166-176. |
28 | Chen H, Si Y, Chen Y, et al. NOx precursors from biomass pyrolysis: distribution of amino acids in biomass and Tar-N during devolatilization using model compounds[J]. Fuel, 2017, 187: 367-375. |
29 | Frisch M J, Trucks G W, Schlegel H B,et al. Gaussian 09: Revision D01[CP]. Wallingford CT: Gaussian, Inc., 2013. |
30 | Gonzalez C, Schlegel H B. An improved algorithm for reaction path following[J]. Journal of Chemical Physics, 1989, 90(4): 2154-2161. |
31 | Choi S S, Ko J E. Analysis of cyclic pyrolysis products formed from amino acid monomer[J]. Journal of Chromatography A, 2011, 1218(46): 8443-8455. |
32 | Kibet J K, Khachatryan L, Dellinger B. Molecular products from the thermal degradation of glutamic acid[J]. J. Agric. Food Chem., 2013, 61(32): 7696-7704. |
33 | Wu H, Reeves-Mclaren N, Jones S, et al. Phase transformations of glutamic acid and its decomposition products[J]. Crystal Growth & Design, 2009, 10(2): 988-994. |
34 | Britt P F, Buchanan A C, Owens Jr C V, et al. Does glucose enhance the formation of nitrogen containing polycyclic aromatic compounds and polycyclic aromatic hydrocarbons in the pyrolysis of proline?[J]. Fuel, 2004, 83(11/12): 1417-1432. |
35 | Paine J B, Pithawalla Y B, Naworal J D. Carbohydrate pyrolysis mechanisms from isotopic labeling (Part 4): The pyrolysis of D-glucose: the formation of furans[J]. Journal of Analytical & Applied Pyrolysis, 2008, 82(1): 10-41. |
36 | Zhang M H, Geng Z F, Yu Y Z. Density functional theory (DFT) study on the pyrolysis of cellulose: the pyran ring breaking mechanism[J]. Computational & Theoretical Chemistry, 2015, 1067: 13-23. |
37 | Hu B, Lu Q, Jiang X Y, et al. Pyrolysis mechanism of glucose and mannose: the formation of 5-hydroxymethyl furfural and furfural[J]. Journal of Energy Chemistry, 2018, 27(2): 486-501. |
38 | Wang S, Liu B, Su Q. Pyrolysis-gas chromatography/mass spectrometry as a useful technique to evaluate the pyrolysis pathways of phenylalanine[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(1): 393-403. |
39 | Hodge J E. Dehydrated foods, chemistry of browning reactions in model systems[J]. Journal of Agricultural and Food Chemistry, 1953, 1(15): 625-651. |
40 | Chen H P, Xie Y P, Chen W, al et, Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2019, 196: 320-329. |
41 | Sharma R K, Chan W G, Hajaligol M R. Product compositions from pyrolysis of some aliphatic α-amino acids[J]. Journal of Analytical and Applied Pyrolysis, 2006, 75(2): 69-81. |
42 | Ren Q, Zhao C. NOx and N2O precursors from biomass pyrolysis: nitrogen transformation from amino acid[J]. Environmental Science & Technology, 2012, 46(7): 4236-4240. |
43 | 朱文辉, 杨柳, 杨红燕, 等. TG-SPME-GC-MS研究谷氨酸和葡萄糖的固相美拉德反应[J]. 食品科学, 2010, (11): 98-103. |
Zhu W H, Yang L, Yang H Y, et al. Solid-phase Maillard reaction between L-ghtamic acid and glucose as determined by TG-SPME-GC-MS[J]. Food Science, 2010, (11): 98-103. | |
44 | Xu L J, Lu Q, Yao Q, et al. Production of 5-methylfurfual or furfural via thermal-catalytic conversion of fructose with pyrolytic solid residue-derived catalysts[J]. Chinese Science Bulletin, 2015, 60(16): 1530. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[3] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[4] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[5] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
[6] | Jing ZHANG, Tao LIU, Wei ZHANG, Zhenyu CHU, Wanqin JIN. Preparation of a novel separation-sensing membrane and its dynamic monitoring of blood glucose [J]. CIESC Journal, 2023, 74(1): 459-468. |
[7] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[8] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[9] | Feng DU, Siqi YIN, Hui LUO, Wenan DENG, Chuan LI, Zhenwei HUANG, Wenjing WANG. Study on size effect of H2 adsorption and dissociation on Mo x S y clusters [J]. CIESC Journal, 2022, 73(9): 3895-3903. |
[10] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[11] | Haoyu XIAO, Haiping YANG, Xiong ZHANG, Yingquan CHEN, Xianhua WANG, Hanping CHEN. Recent progress of catalytic pyrolysis of plastics to produce high value-added products [J]. CIESC Journal, 2022, 73(8): 3461-3471. |
[12] | Xiaqi YU, Ge FENG, Jinyan ZHAO, Jiayuan LI, Shengwei DENG, Jingnan ZHENG, Wenwen LI, Yaqiu WANG, Lan SHEN, Xu LIU, Weiwei XU, Jianguo WANG, Shibin WANG, Zihao YAO, Chengli MAO. A first-principles study of the interaction between TDI-TMP-T313 and AP [J]. CIESC Journal, 2022, 73(8): 3511-3517. |
[13] | Kaihong TANG, Xiaofeng HE, Guiqiu XU, Yang YU, Xiaofeng LIU, Tiejun GE, Ailing ZHANG. Review on combustion behavior and flame retardant research of phenolic foams [J]. CIESC Journal, 2022, 73(8): 3483-3500. |
[14] | Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations [J]. CIESC Journal, 2022, 73(7): 2844-2857. |
[15] | Jihao ZHAO, Weiqiang TANG, Xiaofei XU, Shuangliang ZHAO, Jionghao HE. Adsorption energy of bonding agent on nano-filler in polymer composites [J]. CIESC Journal, 2022, 73(7): 3174-3181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||