CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2466-2480.DOI: 10.11949/0438-1157.20200145
• Reviews and monographs • Previous Articles Next Articles
Tongzhen TIAN(),Nianwu LI,Le YU()
Received:
2020-02-17
Revised:
2020-04-14
Online:
2020-06-05
Published:
2020-06-05
Contact:
Le YU
通讯作者:
于乐
作者简介:
田同振(1996—),男,硕士研究生,基金资助:
CLC Number:
Tongzhen TIAN, Nianwu LI, Le YU. Progress of carbon-based micro-/nanostructured hollow electrocatalysts for water splitting[J]. CIESC Journal, 2020, 71(6): 2466-2480.
田同振, 李念武, 于乐. 中空碳基材料在电解水中的研究进展[J]. 化工学报, 2020, 71(6): 2466-2480.
Add to citation manager EndNote|Ris|BibTeX
1 | Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: insights into materials design[J]. Science, 2017, 355(6321): eaad4998. |
2 | Liu J, Liu Y, Liu N Y, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. Science, 2015, 347(6225): 970-974. |
3 | Zhu C Z, Shi Q R, Feng S, et al. Single-atom catalysts for electrochemical water splitting[J]. ACS Energy Letters, 2018, 3(7): 1713-1721. |
4 | Jiao Y, Zheng Y, Jaroniec M T, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086. |
5 | You B, Sun Y J. Innovative strategies for electrocatalytic water splitting[J]. Accounts of Chemical Research, 2018, 51(7): 1571-1580. |
6 | Wang J H, Cui W, Liu Q, et al. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J]. Advanced Materials, 2016, 28(2): 215-230. |
7 | Zhang H B, Nai J W, Yu L, et al. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications[J]. Joule, 2017, 1(1): 77-107. |
8 | Fei H L, Dong J C, Feng Y X, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nature Catalysis, 2018, 1(1): 63-72. |
9 | Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nature Reviews Chemistry, 2017, 1: 0003. |
10 | Zheng X, Cao X, Li X, et al. Biomass lysine-derived nitrogen-doped carbon hollow cubes via a NaCl crystal template: an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Nanoscale, 2017, 9: 1059-1067. |
11 | Zhu G, Ma L, Lv H, et al. Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors[J]. Nanoscale, 2017, 9: 1237-1243. |
12 | Zhou Y, Leng Y, Zhou W, et al. Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction[J]. Nano Energy, 2015, 16: 357-366. |
13 | Liu Y, Li X, Zhang Q H, et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots[J]. Angewandte Chemie-International Edition, 2020, 59: 1718-1726. |
14 | Xiao W, Zhang L, Bukhvalov D, et al. Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction[J]. Nano Energy, 2020, 70: 104445. |
15 | Wang J Y, Ouyang T, Li N, et al. S, N co-doped carbon nanotube-encapsulated core-shelled CoS2@Co nanoparticles: efficient and stable bifunctional catalysts for overall water splitting[J]. Science Bulletin, 2018, 63: 1130-1140. |
16 | Liu Y, Yang Y P, Peng Z K, et al. Self-crosslinking carbon dots loaded ruthenium dots as an efficient and super-stable hydrogen production electrocatalyst at all pH values[J]. Nano Energy, 2019, 65: 104023. |
17 | 常进法, 肖瑶, 罗兆艳, 等.水电解制氢非贵金属催化剂的研究进展[J].物理化学学报, 2016, 32(7):1556-1592. |
Chang J F, Xiao Y, Luo Z Y, et al. Recent progress of non-noble metal catalysts in water electrolysis for hydrogen production[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1556-1592. | |
18 | Yan Y B, Miao J W, Yang Z H, et al. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications[J]. Chemical Society Reviews, 2015, 44(10): 3295-3346. |
19 | Meng J S, Niu C J, Xu L H, et al. General oriented formation of carbon nanotubes from metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(24): 8212-8221. |
20 | Liu S H, Wang Z Y, Zhou S, et al. Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution[J]. Advanced Materials, 2017, 29(31): 1700874. |
21 | Tian H, Liang J, Liu J. Nanoengineering carbon spheres as nanoreactors for sustainable energy applications[J]. Advanced Materials, 2019, 31(50): 1903886. |
22 | Liu J L, Zhu D D, Guo C X, et al. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions[J]. Advanced Energy Materials, 2017, 7(23): 1700518. |
23 | Yu Y F, Shi Y M, Zhang B. Synergetic transformation of solid inorganic-organic hybrids into advanced nanomaterials for catalytic water splitting[J]. Accounts of Chemical Research, 2018, 51(7): 1711-1721. |
24 | Zhan G W, Li P, Zeng H C. Architectural designs and synthetic strategies of advanced nanocatalysts[J]. Advanced Materials, 2018, 30(47): e1802094. |
25 | Li B W, Zeng H C. Architecture and preparation of hollow catalytic devices[J]. Advanced Materials, 2019, 31(38): 1801104. |
26 | Prieto G, Tuysuz H, Duyckaerts N, et al. Hollow nano- and microstructures as catalysts[J]. Chemical Reviews, 2016, 116(22): 14056-14119. |
27 | Huang K K, Sun Y, Zhang Y, et al. Hollow-structured metal oxides as oxygen-related catalysts[J]. Advanced Materials, 2019, 31(38): 1801430. |
28 | Lee J, Kim S M, Lee I S. Functionalization of hollow nanoparticles for nanoreactor applications[J]. Nano Today, 2014, 9(5): 631-667. |
29 | Park J, Kwon T, Kim J, et al. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions[J]. Chemical Society Reviews, 2018, 47(22): 8173-8202. |
30 | Yu L, Hu H, Wu H B, et al. Complex hollow nanostructures: synthesis and energy-related applications[J]. Advanced Materials, 2017, 29(15): 1604563. |
31 | Zhu W, Chen Z, Pan Y, et al. Functionalization of hollow nanomaterials for catalytic applications: nanoreactor construction[J]. Advanced Materials, 2019, 31(38): e1800426. |
32 | Jin H Y, Guo C X, Liu X, et al. Emerging two-dimensional nanomaterials for electrocatalysis[J]. Chemical Reviews, 2018, 118(13): 6337-6408. |
33 | Stamenkovic V R, Strmcnik D, Lopes P P, et al. Energy and fuels from electrochemical interfaces[J]. Nature Materials, 2017, 16(1): 57-69. |
34 | Jaramillo T F, Jorgensen K P, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834): 100-102. |
35 | Morales-Guio C G, Hu X L. Amorphous molybdenum sulfides as hydrogen evolution catalysts[J]. Accounts of Chemical Research, 2014, 47(8): 2671-2681. |
36 | Suen N T, Hung S F, Quan Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365. |
37 | Zhang J F, Liu J Y, Xi L F, et al. Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction[J]. Journal of the American Chemical Society, 2018, 140(11): 3876-3879. |
38 | Wang Y W, Qiu W J, Song E H, et al. Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications[J]. National Science Review, 2018, 5(3): 327-341. |
39 | Chen C, Kang Y J, Huo Z Y, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339-1343. |
40 | Yu L, Yu X Y, Lou X W. The Design and synthesis of hollow micro-/nanostructures: present and future trends[J]. Advanced Materials, 2018, 30(38): 1800939. |
41 | Li W, Liu J, Zhao D Y. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials, 2016, 1(6): 16023. |
42 | Liu Q, Tian J Q, Cui W, et al. Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution[J]. Angewandte Chemie-International Edition, 2014, 53(26): 6710-6714. |
43 | Gong M, Li Y G, Wang H L, et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation[J]. Journal of the American Chemical Society, 2013, 135(23): 8452-8455. |
44 | Ma T Y, Dai S, Jaroniec M, et al. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts[J]. Angewandte Chemie-International Edition, 2014, 53(28): 7281-7285. |
45 | Pan Y, Sun K, Liu S, et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting[J]. Journal of the American Chemical Society, 2018, 140(7): 2610-2618. |
46 | Yang H, Wang X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications[J]. Advanced Materials, 2019,31(38): 1800743. |
47 | Cai Z X, Wang Z L, Kim J, et al. Hollow functional materials derived from metal-organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications[J]. Advanced Materials, 2019, 31(11): e1804903. |
48 | Yu L, Wu H B, Lou X W. Self-templated formation of hollow structures for electrochemical energy applications[J]. Accounts of Chemical Research, 2017, 50(2): 293-301. |
49 | Feng J, Yin Y D. Self-templating approaches to hollow nanostructures[J]. Advanced Materials, 2019, 31(38): 1802349. |
50 | 李莉香, 刘永长, 耿新, 等.氮掺杂碳纳米管的制备及其电化学性能[J].物理化学学报, 2011, 27(2):443-448. |
Li L X, Liu Y C, Geng X, et al. Synthesis and electrochemical performance of nitrogen-doped carbon nanotubes[J]. Acta Physico-Chimica Sinica, 2011, 27(2): 443-448. | |
51 | Li J C, Hou P X, Zhao S Y, et al. A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Energy & Environmental Science, 2016, 9(10): 3079-3084. |
52 | Zhao Y, Nakamura R, Kamiya K, et al. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation[J]. Nature Communications, 2013, 4: 2390. |
53 | Tavakkoli M, Kallio T, Reynaud O, et al. Single-shell carbon-encapsulated iron nanoparticles: synthesis and high electrocatalytic activity for hydrogen evolution reaction[J]. Angewandte Chemie-International Edition, 2015, 54(15): 4535-4538. |
54 | Wang T, Guo Y R, Zhou Z X, et al. Ni-Mo nanocatalysts on N-doped graphite nanotubes for highly efficient electrochemica hydrogen evolution in acid[J]. ACS Nano, 2016, 10(11): 10397-10403. |
55 | Li D J, Maiti U N, Lim J, et al. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction[J]. Nano Letters, 2014, 14(3): 1228-1233. |
56 | Wang D Y, Gong M, Chou H L, et al. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2015, 137(4): 1587-1592. |
57 | Chen W X, Pei J J, He C T, et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction[J]. Angewandte Chemie-International Edition, 2017, 56(50): 16086-16090. |
58 | Wan X K, Wu H B, Guan B Y, et al. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity[J]. Advanced Materials, 2020, 32(7): 1901349. |
59 | Chen L F, Xu Q. Converting MOFs into amination catalysts[J]. Science, 2017, 358(6361): 304-305. |
60 | Jiang H L, Liu B, Lan Y Q, et al. From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake[J]. Journal of the American Chemical Society, 2011, 133(31): 11854-11857. |
61 | Yan L T, Cao L, Dai P C, et al. Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting[J]. Advanced Functional Materials, 2017, 27(40): 1703455. |
62 | Zhang S L, Guan B Y, Lou X W. Co-Fe alloy/N-doped carbon hollow spheres derived from dual metal-organic frameworks for enhanced electrocatalytic oxygen reduction[J]. Small, 2019, 15(13): 1805324. |
63 | Ma T Y, Dai S, Jaroniec M, et al. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes[J]. Journal of the American Chemical Society, 2014, 136(39): 13925-13931. |
64 | Zhang M D, Dai Q B, Zheng H G, et al. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting[J]. Advanced Materials, 2018, 30(10): 1705431. |
65 | Guan C, Liu X M, Ren W N, et al. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis[J]. Advanced Energy Materials, 2017, 7(12): 1602391. |
66 | Amiinu I S, Pu Z H, Liu X B, et al. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries[J]. Advanced Functional Materials, 2017, 27(44): 1702300. |
67 | Xia B Y, Yan Y, Li N, et al. A metal-organic framework-derived bifunctional oxygen electrocatalyst[J]. Nature Energy, 2016, 1: 15006. |
68 | Lu X F, Yu L, Lou X W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts[J]. Science Advances, 2019, 5(2): eaav6009. |
69 | He P, Yu X Y, Lou X W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution[J]. Angewandte Chemie-International Edition, 2017, 56(14): 3897-3900. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[9] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[10] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[11] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[12] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[13] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[14] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[15] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||