CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4800-4807.DOI: 10.11949/0438-1157.20200680
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Lu LI1,2(),Linghui LIU1,3(),Jinming XU1(),Yanqiang HUANG1,Tao ZHANG1
Received:
2020-06-02
Revised:
2020-07-20
Online:
2020-10-05
Published:
2020-10-05
Contact:
Jinming XU
李路1,2(),刘灵惠1,3(),徐金铭1(),黄延强1,张涛1
通讯作者:
徐金铭
作者简介:
李路(1990—),女,硕士研究生,基金资助:
CLC Number:
Lu LI, Linghui LIU, Jinming XU, Yanqiang HUANG, Tao ZHANG. Synthesis of ruthenium-embedded nitrogen-doped graphene for carbon dioxide hydrogenation[J]. CIESC Journal, 2020, 71(10): 4800-4807.
李路, 刘灵惠, 徐金铭, 黄延强, 张涛. 负载钌的氮掺杂石墨烯催化剂的制备及应用[J]. 化工学报, 2020, 71(10): 4800-4807.
Add to citation manager EndNote|Ris|BibTeX
PMIM 质量/ g | 9.5%氯化钌溶液质量/g | Ru 含量/%(mass) |
---|---|---|
3.6 | 0.215 | 1.4 |
3.6 | 0.430 | 2.1 |
3.6 | 0.645 | 2.4 |
3.6 | 0.860 | 3.5 |
Table 1 Synthesis conditions of Ru-NG catalysts with different Ruthenium loadings
PMIM 质量/ g | 9.5%氯化钌溶液质量/g | Ru 含量/%(mass) |
---|---|---|
3.6 | 0.215 | 1.4 |
3.6 | 0.430 | 2.1 |
3.6 | 0.645 | 2.4 |
3.6 | 0.860 | 3.5 |
样品 | D峰 | G峰 | R=ID/IG | ||
---|---|---|---|---|---|
峰位置/cm-1 | 半峰宽 | 峰位置/cm-1 | 半峰宽 | ||
1.4% Ru-NG | 1378 | 301.7 | 1589 | 103.8 | 3.01 |
2.1% Ru-NG | 1372 | 351.6 | 1591 | 86.4 | 3.53 |
2.4% Ru-NG | 1375 | 293 | 1591 | 100.2 | 3.01 |
3.5% Ru-NG | 1381 | 305 | 1585 | 100.6 | 2.99 |
Table 2 Raman spectral parameters of Ru-NG catalysts
样品 | D峰 | G峰 | R=ID/IG | ||
---|---|---|---|---|---|
峰位置/cm-1 | 半峰宽 | 峰位置/cm-1 | 半峰宽 | ||
1.4% Ru-NG | 1378 | 301.7 | 1589 | 103.8 | 3.01 |
2.1% Ru-NG | 1372 | 351.6 | 1591 | 86.4 | 3.53 |
2.4% Ru-NG | 1375 | 293 | 1591 | 100.2 | 3.01 |
3.5% Ru-NG | 1381 | 305 | 1585 | 100.6 | 2.99 |
样品 | BET比表面积/(m2/g) | 孔容/ (cm3/g) |
---|---|---|
1.4%Ru-NG | 416.9 | 0.26 |
2.1%Ru-NG | 397.3 | 0.25 |
2.4%Ru-NG | 365.0 | 0.22 |
Table 3 Specific surface area and pore volume of Ru-NG catalysts
样品 | BET比表面积/(m2/g) | 孔容/ (cm3/g) |
---|---|---|
1.4%Ru-NG | 416.9 | 0.26 |
2.1%Ru-NG | 397.3 | 0.25 |
2.4%Ru-NG | 365.0 | 0.22 |
催化剂 | AAR① | 转换数(TON)② |
---|---|---|
1.4% Ru-NG | 0.19 | 2587 |
2.4% Ru-NG | 0.35 | 2374 |
3.5% Ru-NG | 0.33 | 1738 |
2.5% Ru/AC | 0.015 | 124 |
Table 4 Hydrogenation of carbon dioxide to formate with Ru-NG catalysts
催化剂 | AAR① | 转换数(TON)② |
---|---|---|
1.4% Ru-NG | 0.19 | 2587 |
2.4% Ru-NG | 0.35 | 2374 |
3.5% Ru-NG | 0.33 | 1738 |
2.5% Ru/AC | 0.015 | 124 |
1 | Gibertini M, Koperski M, Morpurgo A F, et al. Magnetic 2D materials and heterostructures[J]. Nature Nanotechnology, 2019, 14(5): 408-419. |
2 | Wang L, Sasaki T.Titanium oxide nanosheets: graphene analogues with versatile functionalities[J]. Chemical Reviews, 2014, 114(19): 9455-9486. |
3 | 杜以波, Evans D G, 孙鹏, 等.阴离子型层柱材料研究进展[J]. 化学通报, 2000, 63(5): 20-24. |
Du Y B, Evans D G, Sun P, et al. Anionic layered materials[J]. Chemistry, 2000, 63(5): 20-24. | |
4 | Takagaki A, Sugisawa M, Lu D, et al. Exfoliated nanosheets as a new strong solid acid catalyst[J]. Journal of the American Chemical Society, 2003, 125(18): 5479-5485. |
5 | Takagaki A, Yoshida T, Lu D L, et al. Titanium niobate and titanium tantalate nanosheets as strong solid acid catalysts[J]. Journal of Physical Chemistry B, 2004, 108(31): 11549-11555. |
6 | Ida S, Ogata C, Eguchi M, et al. Photoluminescence of perovskite nanosheets prepared by exfoliation of layered oxides, K2Ln2Ti3O10, KLnNb2O7, and RbLnTa2O7 (Ln: lanthanide ion)[J]. Journal of the American Chemical Society, 2008, 130(36): 7052-7059. |
7 | Kalantar-Zadeh K, Ou J Z, Daeneke T, et al. Two dimensional and layered transition metal oxides[J]. Applied Materials Today, 2016, 5: 73-89. |
8 | Li L, Ma R Z, Ebina Y, et al. Layer-by-layer assembly and spontaneous flocculation of oppositely charged oxide and hydroxide nanosheets into inorganic sandwich layered materials[J]. Journal of the American Chemical Society, 2007, 129(25): 8000-8007. |
9 | Cai X K, Ozawa T C, Funatsu A, et al. Tuning the surface charge of 2D oxide nanosheets and the bulk-scale production of superlatticelike composites[J]. Journal of the American Chemical Society, 2015, 137(8): 2844-2847. |
10 | Sakai N, Kamanaka K, Sasaki T. Modulation of photochemical activity of titania nanosheets via heteroassembly with reduced graphene oxide. Enhancement of Photoinduced Hydrophilic Conversion Properties[J]. The Journal of Physical Chemistry C, 2016, 120(42): 23944-23950. |
11 | Ji Q M, Honma I, Paek S, et al. Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing[J]. Angewandte Chemie International Edition, 2010, 49(50): 9737-9739. |
12 | Liu Y Y, Stradins P, Wei S H. van der Waals metal-semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier[J]. Science Advances, 2016, 2(4). |
13 | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
14 | Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. |
15 | Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162. |
16 | Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385. |
17 | Wei D C, Liu Y Q, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its eectrical properties[J]. Nano Letters, 2009, 9(5): 1752-1758. |
18 | Wang H B, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2012, 2(5): 781-794. |
19 | Liang J, Jiao Y, Jaroniec M, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angewandte Chemie International Edition, 2012, 51(46): 11496-11500. |
20 | Fan X M, Yu C, Yang J, et al. A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors[J]. Advanced Energy Materials, 2015, 5(7): 1401761. |
21 | Ling Z, Wang Z Y, Zhang M D, et al. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Advanced Functional Materials, 2016, 26(1): 111-119. |
22 | Reinholdt M, Miehe-Brendle J, Delmotte L, et al. Fluorine route synthesis of montmorillonites containing Mg or Zn and characterization by XRD, thermal analysis, MAS NMR, and EXAFS spectroscopy[J]. Eur. J. Inorg. Chem., 2001, 2001(11): 2831-2841. |
23 | Sasaki T, Watanabe M, Hashizum H, et al. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. pairwise association of nanosheets and dynamic reassembling Process initiated from it[J]. Journal of the American Chemical Society, 1996, 118(35): 8329-8335. |
24 | Ding W, Wei Z D, Chen S G, et al. Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction[J]. Angewandte Chemie International Edition, 2013, 52(45): 11755-11759. |
25 | Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. |
26 | Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Phys. Rev. Lett., 2006, 97(18): 187401. |
27 | Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8(4): 235-246. |
28 | Ruan L W, Xu G S, Gu L N, et al. The physical properties of Li-doped g-C3N4 monolayer sheet investigated by the first-principles[J]. Materials Research Bulletin, 2015, 66: 156-162. |
29 | Lee J H, Ryu J, Kim J Y, et al. Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride[J]. Journal of Materials Chemistry A, 2014, 2(25): 9490-9495. |
30 | Wang F N, Xu J M, Shao X Z, et al. Palladium on nitrogen-doped mesoporous carbon: a bifunctional catalyst for formate-based, carbon-neutral hydrogen storage[J]. ChemSusChem, 2016, 9(3): 246-251. |
31 | 巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4): 1282-1285. |
Gong J L. A brief overview on recent progress on chemical conversion of CO2[J]. CIESC Journal, 2017, 68(4): 1282-1285. | |
32 | Liu Q G, Yang X F, Li L, et al. Direct catalytic hydrogenation of CO2 to formate over a Schiff-base-mediated gold nanocatalyst[J]. Nature Communications, 2017, 8(1): 1407. |
33 | Enthaler S, von Langermann J, Schmidt T. Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage?[J]. Energy & Environmental Science, 2010, 3(9): 1207-1217. |
34 | Sordakis K, Tang C H, Vogt L K, et al. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols[J]. Chemical Reviews, 2018, 118(2): 372-433. |
35 | Álvarez A, Bansode A, Urakawa A, et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chemical Reviews, 2017, 117(14): 9804-9838. |
36 | Wang B S, Luo Z J, Elageed E H M, et al. DBU and DBU-derived ionic liquid synergistic catalysts for the conversion of carbon dioxide/carbon disulfide to 3-aryl-2-oxazolidinones/[1,3]dithiolan-2-ylidenephenyl- amine[J]. ChemCatChem, 2016, 8(4): 830-838. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[6] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[7] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[8] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[9] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[10] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[11] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[12] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[13] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[14] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[15] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||