CIESC Journal ›› 2021, Vol. 72 ›› Issue (6): 2905-2921.DOI: 10.11949/0438-1157.20201715
• Special column for comprehensive utilization of salt lake resouces in Qinghai • Previous Articles Next Articles
WANG Qi1(),ZHAO Youjing1,2,LIU Yang1,WANG Yunhao1,WANG Min2(),XIANG Xu1()
Received:
2020-11-30
Revised:
2021-03-12
Online:
2021-06-05
Published:
2021-06-05
Contact:
WANG Min,XIANG Xu
王琪1(),赵有璟1,2,刘洋1,王云昊1,王敏2(),项顼1()
通讯作者:
王敏,项顼
作者简介:
王琪(1995—),女,硕士研究生,基金资助:
CLC Number:
WANG Qi, ZHAO Youjing, LIU Yang, WANG Yunhao, WANG Min, XIANG Xu. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine with high magnesium/lithium ratio[J]. CIESC Journal, 2021, 72(6): 2905-2921.
王琪, 赵有璟, 刘洋, 王云昊, 王敏, 项顼. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6): 2905-2921.
盐湖地区 | 镁/锂 质量比 | 锂离子浓度/(g/L) | 镁离子浓度/(g/L) | 文献 |
---|---|---|---|---|
察尔汗 | 1437.5 | 0.08 | 115.0 | [ |
一里坪 | 63.7 | 0.379 | 24.15 | [ |
龙木错 | 74.0 | 1.21 | 89.5 | [ |
西台吉乃尔 | 59.1 | 0.26 | 15.36 | [ |
东台吉乃尔 | 40.3 | 0.14 | 5.64 | [ |
大柴旦 | 133.8 | 0.016 | 2.14 | [ |
Table 1 The compositions of high Mg/Li ratio salt lake brines in China
盐湖地区 | 镁/锂 质量比 | 锂离子浓度/(g/L) | 镁离子浓度/(g/L) | 文献 |
---|---|---|---|---|
察尔汗 | 1437.5 | 0.08 | 115.0 | [ |
一里坪 | 63.7 | 0.379 | 24.15 | [ |
龙木错 | 74.0 | 1.21 | 89.5 | [ |
西台吉乃尔 | 59.1 | 0.26 | 15.36 | [ |
东台吉乃尔 | 40.3 | 0.14 | 5.64 | [ |
大柴旦 | 133.8 | 0.016 | 2.14 | [ |
Fig.5 Crystal structure of spinel LiMn2O4(Manganese ions reside in the octahedra formed by oxygen ions. The dotted arrow denotes a lithium diffusion path) (a); Schematic illustration of the lithium diffusion channel from a tetrahedral 8a site to an adjacent 8a site through an octahedral 16c vacancy surrounded by six manganese ions in the octahedral 16d gate sites (b)[23]
Fig.11 Theoretical criterion and boundary conditions for separation of magnesium and lithium in salt lake brine by reaction-coupled separation technology[59]
方法 | 优势 | 尚存问题 | |
---|---|---|---|
萃取法 | 有机溶剂萃取 | 选择性高 | 成本高,腐蚀,严重环境污染 |
离子液体萃取 | 污染较有机萃取剂少,绿色环保 | 萃取剂制取复杂、造价高 | |
吸附法 | 锰系离子筛 | 吸附容量高,选择性高 | 酸处理腐蚀污染,吸附剂溶损严重 |
钛系离子筛 | 吸附容量高,稳定 | 酸处理吸附剂溶损严重,易团聚 | |
铝系吸附剂 | 选择性高,不需酸处理 | 吸附容量低,造粒后容量衰减 | |
反应/分离耦合法 | 反应条件温和,镁锂同时回收,资源综合利用率高 | 引入钠盐 | |
膜法 | 纳滤 | 流程简单、尺寸筛选效应高 | 镁离子透过率较高,膜易污染、前处理要求较高 |
电渗析 | 能耗低,有效分离二价离子 | 无法分离单价金属离子 | |
双极膜 | 能耗低,直接合成LiOH | 无法处理高镁锂比卤水 | |
电化学法 | 离子捕获系统 | 无酸洗脱,稳定性强 | 能耗高,电解液要求高,耗电量大 |
摇椅电池系统 | 可逆性,环境友好性 |
Table 2 Summary of existing lithium extraction techniques
方法 | 优势 | 尚存问题 | |
---|---|---|---|
萃取法 | 有机溶剂萃取 | 选择性高 | 成本高,腐蚀,严重环境污染 |
离子液体萃取 | 污染较有机萃取剂少,绿色环保 | 萃取剂制取复杂、造价高 | |
吸附法 | 锰系离子筛 | 吸附容量高,选择性高 | 酸处理腐蚀污染,吸附剂溶损严重 |
钛系离子筛 | 吸附容量高,稳定 | 酸处理吸附剂溶损严重,易团聚 | |
铝系吸附剂 | 选择性高,不需酸处理 | 吸附容量低,造粒后容量衰减 | |
反应/分离耦合法 | 反应条件温和,镁锂同时回收,资源综合利用率高 | 引入钠盐 | |
膜法 | 纳滤 | 流程简单、尺寸筛选效应高 | 镁离子透过率较高,膜易污染、前处理要求较高 |
电渗析 | 能耗低,有效分离二价离子 | 无法分离单价金属离子 | |
双极膜 | 能耗低,直接合成LiOH | 无法处理高镁锂比卤水 | |
电化学法 | 离子捕获系统 | 无酸洗脱,稳定性强 | 能耗高,电解液要求高,耗电量大 |
摇椅电池系统 | 可逆性,环境友好性 |
1 | Geological Survey U.S.. Mineral Commodity Summaries 2020[EB/OL]. U.S. Government Publishing Office, U.S. Geological Survey, 2020. [2021-03-11]. . |
2 | Guan P Y, Zhou L, Yu Z L, et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 220-235. |
3 | Sun X, Hao H, Zhao F Q, et al. Tracing global lithium flow: a trade-linked material flow analysis[J]. Resources, Conservation and Recycling, 2017, 124: 50-61. |
4 | He M Y, Luo C G, Yang H J, et al. Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: evidence from Li isotopes[J]. Ore Geology Reviews, 2020, 117: 103277. |
5 | Song J F, Nghiem L D, Li X M, et al. Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook[J]. Environmental Science: Water Research & Technology, 2017, 3(4): 593-597. |
6 | Sun S Y, Cai L J, Nie X Y, et al. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane[J]. Journal of Water Process Engineering, 2015, 7: 210-217. |
7 | 张宝全. 柴达木盆地盐湖卤水提锂研究概况[J]. 海湖盐与化工, 2000, 29(4): 9-13, 27. |
Zhang B Q. General situation of research on extracting lithium from salt lake brine in Qaidam Basin[J]. Sea-Lake Salt and Chemical Industry, 2000, 29(4): 9-13, 27. | |
8 | Yu J J, Zheng M P, Wu Q, et al. Extracting lithium from Tibetan Dangxiong Tso Salt Lake of carbonate type by using geothermal salinity-gradient solar pond[J]. Solar Energy, 2015, 115: 133-144. |
9 | Zhang L C, Li L J, Shi D, et al. Selective extraction of lithium from alkaline brine using HBTA-TOPO synergistic extraction system[J]. Separation and Purification Technology, 2017, 188: 167-173. |
10 | Zhang L C, Li L J, Shi D, et al. Recovery of lithium from alkaline brine by solvent extraction with β-diketone[J]. Hydrometallurgy, 2018, 175: 35-42. |
11 | Zhang L C, Li L J, Rui H M, et al. Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction[J]. Journal of Hazardous Materials, 2020, 398: 122840. |
12 | 李丽娟, 彭小五, 时东, 等. 含锂卤水中锂资源高效利用与绿色分离的新型萃取体系[J]. 盐湖研究, 2018, 26(4): 1-10. |
Li L J, Peng X W, Shi D, et al. Eco-friendly separation and effective applications of lithium resources from various brine with lithium: their extractant and extraction system[J]. Journal of Salt Lake Research, 2018, 26(4): 1-10. | |
13 | Zhou Z Y, Fan J H, Liu X T, et al. Recovery of lithium from salt-lake brines using solvent extraction with TBP as extractant and FeCl3 as co-extraction agent[J]. Hydrometallurgy, 2020, 191: 105244. |
14 | Su H, Li Z, Zhang J, et al. Combining selective extraction and easy stripping of lithium using a ternary synergistic solvent extraction system through regulation of Fe3+ coordination[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(4): 1971-1979. |
15 | Su H, Li Z, Zhang J, et al. Recovery of lithium from salt lake brine using a mixed ternary solvent extraction system consisting of TBP, FeCl3 and P507[J]. Hydrometallurgy, 2020, 197: 105487. |
16 | Shi C L, Jia Y Z, Zhang C, et al. Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate[J]. Fusion Engineering and Design, 2015, 90: 1-6. |
17 | Okazoe S, Yasaka Y, Ueno M, et al. Formate ionic liquids playing the roles of reducer and stabilizer for the synthesis of noble metal nanoparticles[J]. Chemistry Letters, 2017, 46(9):1344-1346. |
18 | Shi C L, Jing Y, Xiao J, et al. Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents[J]. Separation and Purification Technology, 2017, 172: 473-479. |
19 | Gao D L, Yu X P, Guo Y F, et al. Extraction of lithium from salt lake brine with triisobutyl phosphate in ionic liquid and kerosene[J]. Chemical Research in Chinese Universities, 2015, 31(4): 621-626. |
20 | Shi C L, Jing Y, Jia Y Z. Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid[J]. Journal of Molecular Liquids, 2016, 215: 640-646. |
21 | Wang Y, Liu H T, Fan J H, et al. Recovery of lithium ions from salt lake brine with a high magnesium/lithium ratio using heteropolyacid ionic liquid[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3062-3072. |
22 | Chen W, Li X W, Chen L L, et al. Tailoring hydrophobic deep eutectic solvent for selective lithium recovery from the mother liquor of Li2CO3[J]. Chemical Engineering Journal, 2020: 127648. |
23 | Xiao W J, Xin C, Li S B, et al. Insight into fast Li diffusion in Li-excess spinel lithium manganese oxide[J]. Journal of Materials Chemistry A, 2018, 6(21): 9893-9898. |
24 | Hunter J C. Preparation of a new crystal form of manganese dioxide: λ-MnO2[J]. Journal of Solid State Chemistry, 1981, 39(2): 142-147. |
25 | Clearfield A. Inorganic ion exchangers, past, present, and future[J]. Solvent Extraction and Ion Exchange, 2000, 18(4): 655-678. |
26 | Sato K, Poojary D M, Clearfield A, et al. The surface structure of the proton-exchanged lithium manganese oxide spinels and their lithium-ion sieve properties[J]. Journal of Solid State Chemistry, 1997, 131(1): 84-93. |
27 | Feng Q, Miyai Y, Kanoh H, et al. Lithium(1+) extraction/insertion with spinel-type lithium manganese oxides. Characterization of redox-type and ion-exchange-type sites[J]. Langmuir, 1992, 8(7): 1861-1867. |
28 | Gao A L, Sun Z H, Li S P, et al. The mechanism of manganese dissolution on Li1.6Mn1.6O4 ion sieves with HCl[J]. Dalton Transactions, 2018, 47(11): 3864-3871. |
29 | Chitrakar R, Kanoh H, Miyai Y, et al. A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties[J]. Chemistry of Materials, 2000, 12(10): 3151-3157. |
30 | Zhao Q, Gao J M, Guo Y X, et al. Facile synthesis of magnetically recyclable Fe-doped lithium ion sieve and its Li adsorption performance[J]. Chemistry Letters, 2018, 47(10): 1308-1310. |
31 | Wang H S, Cui J J, Li M L, et al. Selective recovery of lithium from geothermal water by EGDE cross-linked spherical CTS/LMO[J]. Chemical Engineering Journal, 2020, 389: 124410. |
32 | Xue F, Zhang X X, Niu Y, et al. Preparation and evaluation of α-Al2O3 supported lithium ion sieve membranes for Li+ extraction[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2312-2318. |
33 | Marthi R, Smith Y R. Application and limitations of a H2TiO3 - diatomaceous earth composite synthesized from titania slag as a selective lithium adsorbent[J]. Separation and Purification Technology, 2021, 254: 117580. |
34 | Zhang L Y, He G, Zhou D L, et al. Study on transformation mechanism of lithium titanate modified with hydrochloric acid[J]. Ionics, 2016, 22(11): 2007-2014. |
35 | Wei S D, Wei Y F, Chen T, et al. Porous lithium ion sieves nanofibers: general synthesis strategy and highly selective recovery of lithium from brine water[J]. Chemical Engineering Journal, 2020, 379: 122407. |
36 | Wang S L, Li P, Zhang X, et al. Selective adsorption of lithium from high Mg-containing brines using HxTiO3 ion sieve[J]. Hydrometallurgy, 2017, 174: 21-28. |
37 | He G, Zhang L Y, Zhou D L, et al. The optimal condition for H2TiO3-lithium adsorbent preparation and Li+ adsorption confirmed by an orthogonal test design[J]. Ionics, 2015, 21(8): 2219-2226. |
38 | Wang S L, Li P, Cui W W, et al. Hydrothermal synthesis of lithium-enriched β-Li2TiO3 with an ion-sieve application: excellent lithium adsorption[J]. RSC Advances, 2016, 6(104): 102608-102616. |
39 | Li X W, Chao Y H, Chen L L, et al. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources[J]. Chemical Engineering Journal, 2020, 392: 123731. |
40 | Wang S L, Zheng S L, Wang Z M, et al. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves[J]. Chemical Engineering Journal, 2018, 332: 160-168. |
41 | Graham T R, Hu J Z, Zhang X, et al. Unraveling gibbsite transformation pathways into LiAl-LDH in concentrated lithium hydroxide[J]. Inorganic Chemistry, 2019, 58(18): 12385-12394. |
42 | David F, Vokhmin V, Ionova G. Water characteristics depend on the ionic environment. Thermodynamics and modelisation of the aquo ions[J]. Journal of Molecular Liquids, 2001, 90(1/2/3): 45-62. |
43 | Kiriukhin M Y, Collins K D. Dynamic hydration numbers for biologically important ions[J]. Biophysical Chemistry, 2002, 99(2): 155-168. |
44 | Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. |
45 | Volkov A G, Paula S, Deamer D W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers[J]. Bioelectrochemistry and Bioenergetics, 1997, 42(2): 153-160. |
46 | Nightingale E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1959, 63(9): 1381-1387. |
47 | Zhong J, Lin S, Yu J G. Effects of excessive lithium deintercalation on Li+ adsorption performance and structural stability of lithium/aluminum layered double hydroxides[J]. Journal of Colloid and Interface Science, 2020, 572: 107-113. |
48 | Jiang H X, Yang Y, Sun S Y, et al. Adsorption of lithium ions on lithium-aluminum hydroxides: equilibrium and kinetics[J]. The Canadian Journal of Chemical Engineering, 2020, 98(2): 544-555. |
49 | Jiang H X, Zhang S Y, Yang Y, et al. Synergic and competitive adsorption of Li-Na-MgCl2 onto lithium-aluminum hydroxides[J]. Adsorption, 2020, 26(7): 1039-1049. |
50 | Chen J, Lin S, Yu J G. Quantitative effects of Fe3O4 nanoparticle content on Li+ adsorption and magnetic recovery performances of magnetic lithium-aluminum layered double hydroxides in ultrahigh Mg/Li ratio brines[J]. Journal of Hazardous Materials, 2020, 388: 122101. |
51 | Zhong J, Lin S, Yu J G. Lithium recovery from ultrahigh Mg2+/Li+ ratio brine using a novel granulated Li/Al-LDHs adsorbent[J]. Separation and Purification Technology, 2021, 256: 117780. |
52 | Jiang H X, Yang Y, Yu J G. Application of concentration-dependent HSDM to the lithium adsorption from brine in fixed bed columns[J]. Separation and Purification Technology, 2020, 241: 116682. |
53 | Camera-Roda G, Loddo V, Palmisano L, et al. Process intensification in a photocatalytic membrane reactor: analysis of the techniques to integrate reaction and separation[J]. Chemical Engineering Journal, 2017, 310: 352-359. |
54 | Qing W H, Wu J Q, Deng Y J, et al. A novel catalytically active membrane with highly porous catalytic layer for the conversion enhancement of esterification: focusing on the reduction of mass transfer resistance of the catalytic layer[J]. Journal of Membrane Science, 2017, 539: 359-367. |
55 | Zhu X F, Yang W S. Microstructural and interfacial designs of oxygen-permeable membranes for oxygen separation and reaction-separation coupling[J]. Advanced Materials, 2019, 31(50): 1902547. |
56 | Santaella M A, Jiménez L E, Orjuela A, et al. Design of thermally coupled reactive distillation schemes for triethyl citrate production using economic and controllability criteria[J]. Chemical Engineering Journal, 2017, 328: 368-381. |
57 | Guzmán-Martínez C E, Castro-Montoya A J, Nápoles-Rivera F. Economic and environmental comparison of bioethanol dehydration processes via simulation: reactive distillation, reactor-separator process and azeotropic distillation[J]. Clean Technologies and Environmental Policy, 2019, 21(10): 2061-2071. |
58 | Guo X Y, Hu S F, Wang C X, et al. Highly efficient separation of magnesium and lithium and high-valued utilization of magnesium from salt lake brine by a reaction-coupled separation technology[J]. Industrial & Engineering Chemistry Research, 2018, 57(19): 6618-6626. |
59 | Sun Y, Yun R P, Zang Y F, et al. Highly efficient lithium recovery from pre-synthesized chlorine-ion-intercalated LiAl-layered double hydroxides via a mild solution chemistry process[J]. Materials, 2019, 12(12): 1968. |
60 | Hu S F, Sun Y, Pu M, et al. Determination of boundary conditions for highly efficient separation of magnesium and lithium from salt lake brine by reaction-coupled separation technology[J]. Separation and Purification Technology, 2019, 229: 115813. |
61 | Sun Y, Guo X Y, Hu S F, et al. Highly efficient extraction of lithium from salt lake brine by LiAl-layered double hydroxides as lithium-ion-selective capturing material[J]. Journal of Energy Chemistry, 2019, 34: 80-87. |
62 | Gong L Y, Ouyang W, Li Z R, et al. Direct numerical simulation of continuous lithium extraction from high Mg2+/Li+ ratio brines using microfluidic channels with ion concentration polarization[J]. Journal of Membrane Science, 2018, 556: 34-41. |
63 | Li X H, Mo Y H, Qing W H, et al. Membrane-based technologies for lithium recovery from water lithium resources: a review[J]. Journal of Membrane Science, 2019, 591: 117317. |
64 | Li Y, Zhao Y J, Wang H Y, et al. The application of nanofiltration membrane for recovering lithium from salt lake brine[J]. Desalination, 2019, 468: 114081. |
65 | Li Y, Zhao Y J, Wang M. Effects of pH and salinity on the separation of magnesium and lithium from brine by nanofiltration[J]. Desalination and Water Treatment, 2017, 97: 141-150. |
66 | Zhang C Y, Mu Y X, Zhao S, et al. Lithium extraction from synthetic brine with high Mg2+/Li+ ratio using the polymer inclusion membrane[J]. Desalination, 2020, 496: 114710. |
67 | Li X H, Zhang C J, Zhang S N, et al. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J]. Desalination, 2015, 369: 26-36. |
68 | Li W, Shi C, Zhou A, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation[J]. Separation and Purification Technology, 2017, 186: 233-242. |
69 | Zhang H Z, Xu Z L, Ding H, et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+[J]. Desalination, 2017, 420: 158-166. |
70 | Guo Y, Ying Y L, Mao Y Y, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J]. Angewandte Chemie International Edition, 2016, 55(48): 15120-15124. |
71 | Peng H W, Zhao Q. A nano-heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine[J]. Advanced Functional Materials, 2021, 31(14): 2009430. |
72 | Zhao W Y, Zhou M M, Yan B H, et al. Waste conversion and resource recovery from wastewater by ion exchange membranes: state-of-the-art and perspective[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6025-6039. |
73 | Jiang C X, Wang Y M, Wang Q Y, et al. Production of lithium hydroxide from lake brines through electro–electrodialysis with bipolar membranes (EEDBM)[J]. Industrial & Engineering Chemistry Research, 2014, 53(14): 6103-6112. |
74 | Nie X Y, Sun S Y, Song X F, et al. Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis[J]. Journal of Membrane Science, 2017, 530: 185-191. |
75 | Ying J D, Luo M J, Jin Y, et al. Selective separation of lithium from high Mg/Li ratio brine using single-stage and multi-stage selective electrodialysis processes[J]. Desalination, 2020, 492: 114621. |
76 | Liu G, Zhao Z W, He L H. Highly selective lithium recovery from high Mg/Li ratio brines[J]. Desalination, 2020, 474: 114185. |
77 | Zhao Z W, Liu G, Jia H, et al. Sandwiched liquid-membrane electrodialysis: lithium selective recovery from salt lake brines with high Mg/Li ratio[J]. Journal of Membrane Science, 2020, 596: 117685. |
78 | Qiu Y B, Yao L, Tang C, et al. Integration of selectrodialysis and selectrodialysis with bipolar membrane to salt lake treatment for the production of lithium hydroxide[J]. Desalination, 2019, 465: 1-12. |
79 | Zhao Y J, Wang H Y, Li Y, et al. An integrated membrane process for preparation of lithium hydroxide from high Mg/Li ratio salt lake brine[J]. Desalination, 2020, 493: 114620. |
80 | Battistel A, Palagonia M S, Brogioli D, et al. Electrochemical methods for lithium recovery: a comprehensive and critical review[J]. Advanced Materials, 2020, 32(23): 1905440. |
81 | Zhou G L, Chen L L, Chao Y H, et al. Progress in electrochemical lithium ion pumping for lithium recovery[J]. Journal of Energy Chemistry, 2021, 59: 431-445. |
82 | Kanoh H, Ooi K, Miyai Y, et al. Selective electroinsertion of lithium ions into a platinum/λ-manganese dioxide electrode in the aqueous phase[J]. Langmuir, 1991, 7(9): 1841-1842. |
83 | Kanoh H, Ooi K, Miyai Y, et al. Electrochemical recovery of lithium ions in the aqueous phase[J]. Separation Science and Technology, 1993, 28(1/2/3): 643-651. |
84 | Xu X, Zhou Y, Feng Z W, et al. A self-supported λ-MnO2 film electrode used for electrochemical lithium recovery from brines[J]. ChemPlusChem, 2018, 83(6): 521-528. |
85 | Zhao X Y, Feng M H, Jiao Y X, et al. Lithium extraction from brine in an ionic selective desalination battery[J]. Desalination, 2020, 481: 114360. |
86 | Zhao X Y, Li G Y, Feng M H, et al. Semi-continuous electrochemical extraction of lithium from brine using CF-NMMO/AC asymmetric hybrid capacitors[J]. Electrochimica Acta, 2020, 331: 135285. |
87 | Pasta M, Battistel A, La Mantia F. Batteries for lithium recovery from brines[J]. Energy & Environmental Science, 2012, 5(11): 9487. |
88 | Li Z, Liu D F, Xiong J C, et al. Selective recovery of lithium and iron phosphate/carbon from spent lithium iron phosphate cathode material by anionic membrane slurry electrolysis[J]. Waste Management, 2020, 107: 1-8. |
89 | He L H, Xu W H, Song Y F, et al. New insights into the application of lithium-ion battery materials: selective extraction of lithium from brines via a rocking-chair lithium-ion battery system[J]. Global Challenges, 2018, 2(2): 1700079. |
[1] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[7] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[10] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[13] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[14] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[15] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1859
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 2681
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||