CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5858-5866.DOI: 10.11949/0438-1157.20210747
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Haichang LI(),Yan HE,Hongran SUN,Changmeng XU,Mai LI,Wenming SONG,Huifang LI,Xiaojun WANG(),Zhiming LIU()
Received:
2021-06-01
Revised:
2021-08-12
Online:
2021-11-12
Published:
2021-11-05
Contact:
Xiaojun WANG,Zhiming LIU
李海昌(),何燕,孙洪冉,徐常蒙,李劢,宋文明,李慧芳,王晓君(),刘治明()
通讯作者:
王晓君,刘治明
作者简介:
李海昌(1995—),男,硕士研究生,基金资助:
CLC Number:
Haichang LI, Yan HE, Hongran SUN, Changmeng XU, Mai LI, Wenming SONG, Huifang LI, Xiaojun WANG, Zhiming LIU. Yolk-shell structural FeS2@CFs thin film electrode with excellent lithium storage performance[J]. CIESC Journal, 2021, 72(11): 5858-5866.
李海昌, 何燕, 孙洪冉, 徐常蒙, 李劢, 宋文明, 李慧芳, 王晓君, 刘治明. 具有优异锂存储性能的蛋黄蛋壳结构FeS2@CFs薄膜电极[J]. 化工学报, 2021, 72(11): 5858-5866.
Add to citation manager EndNote|Ris|BibTeX
Fig.6 CV curve of FeS2@CFs-40 at 0.1 mV·s-1 (a); FeS2@CFs-40 charge-discharge curve of the first four cycles at 0.1A·g-1 (b); Rate performance of FeS2@CFs-40 and FeS2@CFs-0 (c); Cycling performance of FeS2@CFs-40 and FeS2@CFs-0 at 0.5 A·g-1 (d); Cycling performance of FeS2@CFs-0, FeS2@CFs-20, FeS2@CFs-40 and FeS2@CFs-60 at 1 A·g-1, respectively (e)
材料类型 | 循环性能 | 倍率性能 | 参考文献 | |||
---|---|---|---|---|---|---|
电流密度/(A·g-1) | 圈数/n | 比容量/(mAh·g-1) | 电流密度/(A·g-1) | 比容量/(mAh·g-1) | ||
FeS2@C/rGO | 0.89 | 250 | 412 | 1.78 | 389 | [ |
FeS2@carbon fiber | 0.2 | 300 | 280 | 0.2 | 275 | [ |
FeS2 microspheres | 2 | 100 | 495 | 8 | 318 | [ |
FeS2/C | 0.1 | 80 | 1100 | 2 | 866 | [ |
GF/FeS2@C | 2 | 400 | 678.2 | 20 | 530 | [ |
FeS2@POC | 2 | 200 | 590 | 5 | 381 | [ |
FeS2@CFs-40 | 1 | 500 | 590.8 | 5 | 415.4 | 本文 |
Table 1 Performance comparison of FeS2 anode materials for LIBs
材料类型 | 循环性能 | 倍率性能 | 参考文献 | |||
---|---|---|---|---|---|---|
电流密度/(A·g-1) | 圈数/n | 比容量/(mAh·g-1) | 电流密度/(A·g-1) | 比容量/(mAh·g-1) | ||
FeS2@C/rGO | 0.89 | 250 | 412 | 1.78 | 389 | [ |
FeS2@carbon fiber | 0.2 | 300 | 280 | 0.2 | 275 | [ |
FeS2 microspheres | 2 | 100 | 495 | 8 | 318 | [ |
FeS2/C | 0.1 | 80 | 1100 | 2 | 866 | [ |
GF/FeS2@C | 2 | 400 | 678.2 | 20 | 530 | [ |
FeS2@POC | 2 | 200 | 590 | 5 | 381 | [ |
FeS2@CFs-40 | 1 | 500 | 590.8 | 5 | 415.4 | 本文 |
1 | Li M, Lu J, Chen Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561. |
2 | Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
3 | Wu B, Song H H, Zhou J S, et al. Iron sulfide-embedded carbon microsphere anode material with high-rate performance for lithium-ion batteries[J]. Chemical Communications, 2011, 47(30): 8653. |
4 | Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
5 | Liu Y Y, Zhong M, Kong L J, et al. Fe1–xS/nitrogen and sulfur Co-doped carbon composite derived from a nanosized metal–organic framework for high-performance lithium-ion batteries[J]. Inorganic Chemistry Frontiers, 2019, 6(1): 50-56. |
6 | Zhao K N, Wen M Y, Dong Y F, et al. Thermal induced strain relaxation of 1D iron oxide for solid electrolyte interphase control and lithium storage improvement[J]. Advanced Energy Materials, 2017, 7(6): 1601582. |
7 | Xing C C, Zhang D, Cao K, et al. In situ growth of FeS microsheet networks with enhanced electrochemical performance for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(16): 8742-8749. |
8 | Park G D, Lee J K, Kang Y C. Electrochemical reaction mechanism of amorphous iron selenite with ultrahigh rate and excellent cyclic stability performance as new anode material for lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 389: 124350. |
9 | Shi J W, Zu L H, Gao H Y, et al. Silicon-based self-assemblies for high volumetric capacity Li-ion batteries via effective stress management[J]. Advanced Functional Materials, 2020, 30(35): 2002980. |
10 | Son Y, Kim N, Lee T, et al. Calendering-compatible macroporous architecture for silicon-graphite composite toward high-energy lithium-ion batteries[J]. Advanced Materials, 2020, 32(37): 2003286. |
11 | Song J H, Xiao D D, Jia H P, et al. A comparative study of pomegranate Sb@C yolk-shell microspheres as Li and Na-ion battery anodes[J]. Nanoscale, 2018, 11(1): 348-355. |
12 | Wang J, Fang J J, Zhao H L, et al. Raspberry-like hierarchical structure FeS2 decorated by dual-carbon framework as high-performance cathode for rechargeable lithium batteries[J]. Carbon, 2021, 171: 171-178. |
13 | Zhu Y, Fan X, Suo L, et al. Electrospun FeS2@Carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries[J]. ACS Nano, 2016, 10(1): 1529-1538. |
14 | Hu Z, Zhang K, Zhu Z Q, et al. FeS2 microspheres with an ether-based electrolyte for high-performance rechargeable lithium batteries[J]. Journal of Materials Chemistry A, 2015, 3(24): 12898-12904. |
15 | Xiao Y, Hwang J Y, Belharouak I, et al. Na storage capability investigation of a carbon nanotube-encapsulated Fe1–xS composite[J]. ACS Energy Letters, 2017, 2(2): 364-372. |
16 | 夏青, 徐宇兴, 周运成, 等. 核壳结构米粒状FeS2/C纳米材料制备及储锂性能研究[J]. 化工学报, 2021, 72(5): 2849-2856. |
Xia Q, Xu Y X, Zhou Y C, et al. Preparation and lithium storage performance of rice-like core-shell FeS2/C nanoparticles[J]. CIESC Journal, 2021, 72(5): 2849-2856. | |
17 | Jing P, Wang Q, Wang B Y, et al. Encapsulating yolk-shell FeS2@carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage[J]. Carbon, 2020, 159: 366-377. |
18 | Yin W H, Li W Y, Wang K, et al. FeS2@Porous octahedral carbon derived from metal-organic framework as a stable and high capacity anode for lithium-ion batteries[J]. Electrochimica Acta, 2019, 318: 673-682. |
19 | Sun Z H, Wu X L, Gu Z Y, et al. Rationally designed nitrogen-doped yolk-shell Fe7Se8/Carbon nanoboxes with enhanced sodium storage in half/full cells[J]. Carbon, 2020, 166: 175-182. |
20 | Zhang K L, Zhang T W, Liang J W, et al. A potential pyrrhotite (Fe7S8) anode material for lithium storage[J]. RSC Advances, 2015, 5(19): 14828-14831. |
21 | Liu Z M, Hu F, Xiang J, et al. A nano-micro hybrid structure composed of Fe7S8 nanoparticles embedded in nitrogen-doped porous carbon framework for high-performance lithium/sodium-ion batteries[J]. Particle & Particle Systems Characterization, 2018, 35(8): 1800163. |
22 | Yao Y Y, Zheng J C, Gong Z Y, et al. Metal-organic framework derived flower-like FeS/C composite as an anode material in lithium-ion and sodium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 790: 288-295. |
23 | Frey M, Zenn R K, Warneke S, et al. Easily accessible, textile fiber-based sulfurized poly(acrylonitrile) as Li/S cathode material: correlating electrochemical performance with morphology and structure[J]. ACS Energy Letters, 2017, 2(3): 595-604. |
24 | Wei X, Li W H, Shi J N, et al. FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage[J]. ACS Applied Materials & Interfaces, 2015, 7(50): 27804-27809. |
25 | Haridas A K, Heo J, Li X Y, et al. A flexible and free-standing FeS/sulfurized polyacrylonitrile hybrid anode material for high-rate sodium-ion storage[J]. Chemical Engineering Journal, 2020, 385: 123453. |
26 | Liu Y C, Zhang N, Jiao L F, et al. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries[J]. Advanced Materials, 2015, 27(42): 6702-6707. |
27 | Zheng F C, Yang Y, Chen Q W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework[J]. Nature Communications, 2014, 5: 5261. |
28 | Yuan Y, Chen Z W, Yu H X, et al. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries[J]. Energy Storage Materials, 2020, 32: 65-90. |
29 | Zhang Q B, Liao J, Liao M, et al. One-dimensional Fe7S8@C nanorods as anode materials for high-rate and long-life lithium-ion batteries[J]. Applied Surface Science, 2019, 473: 799-806. |
30 | Wang H, Qian X K, Wu H Y, et al. MOF-derived rod-like composites consisting of iron sulfides embedded in nitrogen-rich carbon as high-performance lithium-ion battery anodes[J]. Applied Surface Science, 2019, 481: 33-39. |
31 | Xue H T, Yu D Y W, Qing J, et al. Pyrite FeS2 microspheres wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes[J]. Journal of Materials Chemistry A, 2015, 3(15): 7945-7949. |
32 | Lu J H, Lian F, Guan L L, et al. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages[J]. Journal of Materials Chemistry A, 2019, 7(3): 991-997. |
33 | Zhang X J, Gao X Y, Li J F, et al. In-situ synthesis of Fe7S8 nanocrystals decorated on N, S-codoped carbon nanotubes as anode material for high-performance lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2020, 579: 699-706. |
34 | He J R, Li Q, Chen Y F, et al. Self-assembled cauliflower-like FeS2 anchored into graphene foam as free-standing anode for high-performance lithium-ion batteries[J]. Carbon, 2017, 114: 111-116. |
[1] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[6] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[7] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[8] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[9] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[10] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[13] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[14] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[15] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||