CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 6371-6379.DOI: 10.11949/0438-1157.20210786
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Yizhou ZHANG1(),Xianhong WU1,Zhiyu WANG1(),Jieshan QIU1,2()
Received:
2021-06-10
Revised:
2021-09-08
Online:
2021-12-22
Published:
2021-12-05
Contact:
Zhiyu WANG,Jieshan QIU
通讯作者:
王治宇,邱介山
作者简介:
张毅舟(1996—),男,硕士研究生,基金资助:
CLC Number:
Yizhou ZHANG, Xianhong WU, Zhiyu WANG, Jieshan QIU. Biomass-derived B/N co-doped carbon nanosheets decorated with single-layered MoS2 for sodium storage[J]. CIESC Journal, 2021, 72(12): 6371-6379.
张毅舟, 吴籼虹, 王治宇, 邱介山. 镶嵌单层MoS2的生物质基硼氮共掺杂碳纳米片合成与储钠性能[J]. 化工学报, 2021, 72(12): 6371-6379.
Add to citation manager EndNote|Ris|BibTeX
1 | Niu S, Wang Z, Yu M, et al. MXene-based electrode with enhanced pseudocapacitance and volumetric capacity for power-type and ultra-long life lithium storage[J]. ACS Nano, 2018, 12(4): 3928-3937. |
2 | Wang Y Z, Zhou D, Palomares V, et al. Revitalising sodium-sulfur batteries for non-high-temperature operation: a crucial review[J]. Energy & Environmental Science, 2020, 13(11): 3848-3879. |
3 | Loaiza L C, Monconduit L, Seznec V. Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: a perspective from structure to electrochemical mechanism[J]. Small, 2020, 16(5): 1905260. |
4 | Gong D C, Wei C Y, Liang Z W, et al. Recent advances on sodium-ion batteries and sodium dual-ion batteries: state-of-the-art Na+ host anode materials[J]. Small Science, 2021, 1(6): 2100014. |
5 | Yang X M, Rogach A L. Anodes and sodium-free cathodes in sodium ion batteries[J]. Advanced Energy Materials, 2020, 10(22): 2000288. |
6 | Cheng X L, Shao R W, Li D J, et al. A self-healing volume variation three-dimensional continuous bulk porous bismuth for ultrafast sodium storage[J]. Advanced Functional Materials, 2021, 31(22): 2011264. |
7 | Yang H, Chen L W, He F, et al. Optimizing the void size of yolk-shell Bi@Void@C nanospheres for high-power-density sodium-ion batteries[J]. Nano Letters, 2020, 20(1): 758-767. |
8 | Liu Y Z, Yang C H, Zhang Q Y, et al. Recent progress in the design of metal sulfides as anode materials for sodium ion batteries[J]. Energy Storage Materials, 2019, 22: 66-95. |
9 | Ali Z, Zhang T, Asif M, et al. Transition metal chalcogenide anodes for sodium storage[J]. Materials Today, 2020, 35: 131-167. |
10 | Chen B, Chao D L, Liu E Z, et al. Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level[J]. Energy & Environmental Science, 2020, 13(4): 1096-1131. |
11 | Hu Z, Wang L X, Zhang K, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries[J]. Angewandte Chemie, 2014, 126(47): 13008-13012. |
12 | Zhu C B, Mu X K, van Aken P A, et al. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage[J]. Angewandte Chemie, 2014, 126(8): 2184-2188. |
13 | Zhang L, Wu H B, Yan Y, et al. Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting[J]. Energy Environ. Sci., 2014, 7(10): 3302-3306. |
14 | Qiao Y, Wu J W, Cheng X G, et al. Construction of robust coupling interface between MoS2 and nitrogen doped graphene for high performance sodium ion batteries[J]. Journal of Energy Chemistry, 2020, 48: 435-442. |
15 | Zhang W L, Zhou H H, Huang Z Y, et al. 3D hierarchical microspheres constructed by ultrathin MoS2-C nanosheets as high-performance anode material for sodium-ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 307-315. |
16 | 胡平, 陈震宇, 王快社, 等. 二维层状二硫化钼复合材料的研究进展及发展趋势[J]. 化工学报, 2017, 68(4): 1286-1298. |
Hu P, Chen Z Y, Wang K S, et al. Present status and perspective of two-dimensional layered molybdenum disulfide and its composites[J]. CIESC Journal, 2017, 68(4): 1286-1298. | |
17 | Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. |
18 | Lauritsen J V, Kibsgaard J, Helveg S, et al. Size-dependent structure of MoS2 nanocrystals[J]. Nature Nanotechnology, 2007, 2(1): 53-58. |
19 | Shao Q J, Lu P F, Xu L, et al. Rational design of MoS2 nanosheets decorated on mesoporous hollow carbon spheres as a dual-functional accelerator in sulfur cathode for advanced pouch-type Li-S batteries[J]. Journal of Energy Chemistry, 2020, 51: 262-271. |
20 | Ru J J, He T, Chen B J, et al. Covalent assembly of MoS2 nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries[J]. Angewandte Chemie, 2020, 132(34): 14729-14735. |
21 | Zhou J, Qin J, Zhang X, et al. 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode[J]. ACS Nano, 2015, 9(4): 3837-3848. |
22 | Lu Y Y, Zhao Q, Zhang N, et al. Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres[J]. Advanced Functional Materials, 2016, 26(6): 911-918. |
23 | Zhang J, Han J W, Yun Q B, et al. What is the right carbon for practical anode in alkali metal ion batteries? [J]. Small Science, 2021, 1(3): 2000063. |
24 | Han M S, Lin Z J, Yu J. Ultrathin MoS2 nanosheets homogenously embedded in a N, O-codoped carbon matrix for high-performance lithium and sodium storage[J]. Journal of Materials Chemistry A, 2019, 7(9): 4804-4812. |
25 | Liu J, Yuan H, Tao X Y, et al. Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries[J]. EcoMat, 2020, 2(1): e12019. |
26 | Ling Z, Wang Z Y, Zhang M D, et al. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Advanced Functional Materials, 2016, 26(1): 111-119. |
27 | Hwang H, Kim H, Cho J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J]. Nano Letters, 2011, 11(11): 4826-4830. |
28 | Li X H, Antonietti M. Polycondensation of boron- and nitrogen-codoped holey graphene monoliths from molecules: carbocatalysts for selective oxidation[J]. Angewandte Chemie International Edition, 2013, 52(17): 4572-4576. |
29 | Hulicova-Jurcakova D, Seredych M, Lu G Q, et al. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors[J]. Advanced Functional Materials, 2009, 19(3): 438-447. |
30 | Liu K K, Zhang W J, Lee Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J]. Nano Letters, 2012, 12(3): 1538-1544. |
31 | Li J S, Wang Y, Liu C H, et al. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution[J]. Nature Communications, 2016, 7: 11204. |
32 | Sun W Y, Hu Z, Wang C Y, et al. Effects of carbon content on the electrochemical performances of MoS2–C nanocomposites for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22168-22174. |
33 | Wang X F, Shen X, Wang Z X, et al. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation[J]. ACS Nano, 2014, 8(11): 11394-11400. |
34 | Ryu W H, Jung J W, Park K, et al. Vine-like MoS2 anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries[J]. Nanoscale, 2014, 6(19): 10975-10981. |
35 | Ding Y L, Kopold P, Hahn K, et al. A lamellar hybrid assembled from metal disulfide nanowall arrays anchored on a carbon layer: in situ hybridization and improved sodium storage[J]. Advanced Materials, 2016, 28(35): 7774-7782. |
36 | Chen B, Wang T S, Zhao S Y, et al. Efficient reversible conversion between MoS2 and Mo/Na2S enabled by graphene-supported single atom catalysts[J]. Advanced Materials, 2021, 33(12): 2007090. |
37 | David L, Bhandavat R, Singh G. MoS2/graphene composite paper for sodium-ion battery electrodes[J]. ACS Nano, 2014, 8(2): 1759-1770. |
38 | Wu X H, Wang Z Y, Yu M Z, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J]. Advanced Materials, 2017, 29(24): 1607017. |
[1] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[4] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[5] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[6] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[7] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[8] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[9] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[10] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[11] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[12] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[13] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[14] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
[15] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||