CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 6030-6048.DOI: 10.11949/0438-1157.20210855
• Reviews and monographs • Previous Articles Next Articles
Zongping HONG1,2,4(),Chumei YE1,2,Hong WU1,2(
),Peng ZHANG1,2,4,Cuijia DUAN4,Biao YUAN4,Shuo YAN4,Zan CHEN4(
),Zhongyi JIANG1,2,3(
)
Received:
2021-06-25
Revised:
2021-08-13
Online:
2021-12-22
Published:
2021-12-05
Contact:
Hong WU,Zan CHEN,Zhongyi JIANG
洪宗平1,2,4(),叶楚梅1,2,吴洪1,2(
),张鹏1,2,4,段翠佳4,袁标4,严硕4,陈赞4(
),姜忠义1,2,3(
)
通讯作者:
吴洪,陈赞,姜忠义
作者简介:
洪宗平(1989—),男,硕士研究生,基金资助:
CLC Number:
Zongping HONG, Chumei YE, Hong WU, Peng ZHANG, Cuijia DUAN, Biao YUAN, Shuo YAN, Zan CHEN, Zhongyi JIANG. Research progress in CO2 removal technology of natural gas[J]. CIESC Journal, 2021, 72(12): 6030-6048.
洪宗平, 叶楚梅, 吴洪, 张鹏, 段翠佳, 袁标, 严硕, 陈赞, 姜忠义. 天然气脱碳技术研究进展[J]. 化工学报, 2021, 72(12): 6030-6048.
1 | British Petroleum p.l.c. Statistical Review of World Energy 2020[EB/OL]. . |
2 | British Petroleum p.l.c. Energy Outlook: 2020 edition[EB/OL]. . |
3 | British Petroleum p.l.c.«bp世界能源展望»2020年版:快速转型,净零和一切如常情景的洞察——中国[EB/OL]. . |
British Petroleum p.l.c.The2020edition of bp's World Energy Outlook: the perspectives of rapid, net zero and business-as-usual —— China[EB/OL]. . | |
4 | Wang S F, Li X Q, Wu H, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890. |
5 | Maqsood K, Mullick A, Ali A, et al. Cryogenic carbon dioxide separation from natural gas: a review based on conventional and novel emerging technologies[J]. Reviews in Chemical Engineering, 2014, 30(5): 453-477. |
6 | Maqsood K, Pal J, Turunawarasu D, et al. Performance enhancement and energy reduction using hybrid cryogenic distillation networks for purification of natural gas with high CO2 content[J]. Korean Journal of Chemical Engineering, 2014, 31(7): 1120-1135. |
7 | 夏明珠, 严莲荷, 雷武, 等. 二氧化碳的分离回收技术与综合利用[J]. 现代化工, 1999, 19(5):46-48. |
Xia M Z, Yan L H, Lei W, et al. The separation technology and comprehensive utilization for CO2[J]. Modern Chemical Industry, 1999, 19(5): 46-48. | |
8 | Hart A, Gnanendran N. Cryogenic CO2 capture in natural gas[J]. Energy Procedia, 2009, 1(1): 697-706. |
9 | Song C F, Liu Q L, Deng S, et al. Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 265-278. |
10 | Pellegrini L A. Process for the removal of CO from acid gas: US9945605[P]. 2018-04-17. |
11 | Langè S, Pellegrini L A, Vergani P, et al. Energy and economic analysis of a new low-temperature distillation process for the upgrading of high-CO2 content natural gas streams[J]. Industrial & Engineering Chemistry Research, 2015, 54(40): 9770-9782. |
12 | Maqsood K, Ali A, Shariff A B M, et al. Process intensification using mixed sequential and integrated hybrid cryogenic distillation network for purification of high CO2 natural gas[J]. Chemical Engineering Research and Design, 2017, 117: 414-438. |
13 | Yeo Z Y, Chew T L, Zhu P W, et al. Conventional processes and membrane technology for carbon dioxide removal from natural gas: a review[J]. Journal of Natural Gas Chemistry, 2012, 21(3): 282-298. |
14 | 刘宝林. 低温变压吸附脱除天然气中二氧化碳实验研究[D]. 大连: 大连理工大学, 2015. |
Liu B L. Experimental study of low-temperature and pressure swing adsorption removal carbon dioxide gas from natural gas[D]. Dalian: Dalian University of Technology, 2015. | |
15 | Rufford T E, Smart S, Watson G C Y, et al. The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies[J]. Journal of Petroleum Science and Engineering, 2012, 94/95: 123-154. |
16 | Araújo O D Q F, Reis A D C, de Medeiros J L, et al. Comparative analysis of separation technologies for processing carbon dioxide rich natural gas in ultra-deepwater oil fields[J]. Journal of Cleaner Production, 2017, 155: 12-22. |
17 | Brunetti A, Scura F, Barbieri G, et al. Membrane technologies for CO2 separation[J]. Journal of Membrane Science, 2010, 359(1/2): 115-125. |
18 | 胡伟. 天然气脱酸工艺[J]. 辽宁化工, 2017, 46(9): 915-916, 919. |
Hu W. Discussion on natural gas deacidification processes[J]. Liaoning Chemical Industry, 2017, 46(9): 915-916, 919. | |
19 | Speight J G. Process classification[M]//Natural Gas. Amsterdam: Elsevier, 2007: 131-160. |
20 | Kohl A L, Nielsen R B. Physical solvents for acid gas removal[M]//Gas Purification. Amsterdam: Elsevier, 1997: 1187-1237. |
21 | 陈赓良, 李劲. 天然气脱硫脱碳工艺的选择[J]. 天然气与石油, 2014, 32(6): 29-34, 9. |
Chen G L, Li J. Selection of gas desulfurization and decarburization process[J]. Natural Gas and Oil, 2014, 32(6): 29-34, 9. | |
22 | Tan L S, Shariff A M, Lau K K, et al. Factors affecting CO2 absorption efficiency in packed column: a review[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 1874-1883. |
23 | Sreedhar I, Nahar T, Venugopal A, et al. Carbon capture by absorption -path covered and ahead[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 1080-1107. |
24 | Tan L S, Shariff A M, Lau K K, et al. Impact of high pressure on high concentration carbon dioxide capture from natural gas by monoethanolamine/N-methyl-2-pyrrolidone solvent in absorption packed column[J]. International Journal of Greenhouse Gas Control, 2015, 34: 25-30. |
25 | Shannon M S, Tedstone J M, Danielsen S P O, et al. Evaluation of alkylimidazoles as physical solvents for CO2/CH4 separation[J]. Industrial & Engineering Chemistry Research, 2012, 51(1): 515-522. |
26 | 姜宁, 李春福, 王远江, 等. 天然气脱二氧化碳工艺方法综述[J]. 化学工程与装备, 2011(7): 147-150. |
Jiang N, Li C F, Wang Y J, et al. Review of removal processes for carbon dioxide from natural gas[J]. Chemical Engineering & Equipment, 2011(7): 147-150. | |
27 | 张磊, 蒋洪. 高含CO2天然气脱碳工艺中MDEA活化剂优选[J]. 石油与天然气化工, 2017, 46(4): 22-29. |
Zhang L, Jiang H. MDEA activator optimization for decarbonization process of high CO2-containing natural gas[J]. Chemical Engineering of Oil & Gas, 2017, 46(4): 22-29. | |
28 | 彭修军, 黄帆, 谢文静, 等. 活化MDEA脱碳溶剂CT8-23在天然气提氦厂的应用[J]. 石油与天然气化工, 2016, 45(4): 26-30. |
Peng X J, Huang F, Xie W J, et al. Application of activated MDEA decarbonization solvent CT8-23 in the plant of enriching helium from natural gas[J]. Chemical Engineering of Oil & Gas, 2016, 45(4): 26-30. | |
29 | 杨仁杰, 陈小榆, 蒋洪. 活化MDEA与混合胺适应性研究[J]. 石油与天然气化工, 2018, 47(3): 21-25, 30. |
Yang R J, Chen X Y, Jiang H. Study on the adaptability of activated MDEA and mixed amines[J]. Chemical Engineering of Oil & Gas, 2018, 47(3): 21-25, 30. | |
30 | 张祥坤. 活化MDEA溶液用于天然气脱碳性能的研究[D]. 青岛: 中国海洋大学, 2015. |
Zhang X K. The study on carbon dioxide absorption from natural gas in activated N-methyldiethanolamine solution[D]. Qingdao: Ocean University of China, 2015. | |
31 | Shell Catalysts & Technologies. Switching to ADIP-X or Sulfinol-X[EB/OL]. . |
32 | 曾树兵. 混合胺脱碳工艺在珠海天然气液化项目中的应用研究[D]. 东营: 中国石油大学(华东), 2014. |
Zeng S B. Applied research of mixed amine decarburization process in liquefied natural gas project in Zhuhai[D]. Dongying: China University of Petroleum, 2014. | |
33 | 周声结, 贺莹. 国内大规模MDEA脱碳技术在中海油成功应用: 以中海油东方天然气处理厂为例[J]. 天然气工业, 2012, 32(8): 35-38, 128. |
Zhou S J, He Y. Application of MDEA decarbonizing technology in CNOOC offshore gas fields: a case history of the CNOOC Dongfang Natural Gas Processing Plant[J]. Natural Gas Industry, 2012, 32(8): 35-38, 128. | |
34 | 李世广. 松南气田2种脱碳技术的应用总结[J]. 化学工业与工程技术, 2013, 34(3): 14-16. |
Li S G. Application summary of two natural gas treating technologies in Songnan gasfield[J]. Journal of Chemical Industry & Engineering, 2013, 34(3): 14-16. | |
35 | Kittel J, Fleury E, Vuillemin B, et al. Corrosion in alkanolamine used for acid gas removal: from natural gas processing to CO2 capture[J]. Materials and Corrosion, 2012, 63(3): 223-230. |
36 | 陈颖, 张雪楠, 梁宏宝, 等. 富含CO2天然气净化技术现状及研究方向[J]. 石油学报(石油加工), 2015, 31(1): 194-202. |
Chen Y, Zhang X N, Liang H B, et al. Present situation and research directions of purification technology used in natural gas containing rich CO2[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(1): 194-202. | |
37 | 朱利凯, 陈怀龙. 天然气脱碳装置产能核定实例介绍[J]. 石油与天然气化工, 2013, 42(4): 331-335. |
Zhu L K, Chen H L. An example for examination of working capacity on the plant of bulk CO2 removal from natural gas[J]. Chemical Engineering of Oil & Gas, 2013, 42(4): 331-335. | |
38 | 万宇飞, 邓骁伟, 程涛, 等. 不同含碳量天然气脱碳方案选择[J]. 油气田环境保护, 2013, 23(3): 56-58, 75. |
Wan Y F, Deng X W, Cheng T, et al. Decarbonization scheme selection for natural gas with different carbon content[J]. Environmental Protection of Oil & Gas Fields, 2013, 23(3): 56-58, 75. | |
39 | 张中正. 二氧化碳的吸附分离[D]. 天津: 天津大学, 2012. |
Zhang Z Z. Adsorptive separation of carbon dioxide[D]. Tianjin: Tianjin University, 2012. | |
40 | 黄星, 曹文胜. 变压吸附PSA净化天然气技术[J]. 低温与特气, 2014, 32(3): 6-9. |
Huang X, Cao W S. Purification technology of natural gas by pressure swing adsorption[J]. Low Temperature and Specialty Gases, 2014, 32(3): 6-9. | |
41 | Esteves I A A C, Lopes M S S, Nunes P M C, et al. Adsorption of natural gas and biogas components on activated carbon[J]. Separation and Purification Technology, 2008, 62(2): 281-296. |
42 | Rocha L A M, Andreassen K A, Grande C A. Separation of CO2/CH4 using carbon molecular sieve (CMS) at low and high pressure[J]. Chemical Engineering Science, 2017, 164: 148-157. |
43 | 孔祥明, 杨颖, 沈文龙, 等. CO2/CH4/N2在沸石13X-APG上的吸附平衡[J]. 化工学报, 2013, 64(6): 2117-2124. |
Kong X M, Yang Y, Shen W L, et al. Adsorption equilibrium of CO2, CH4 and N2 on zeolite 13X-APG[J]. CIESC Journal, 2013, 64(6): 2117-2124. | |
44 | Saha D, Bao Z B, Jia F, et al. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A[J]. Environmental Science & Technology, 2010, 44(5): 1820-1826. |
45 | Tamnanloo J, Fatemi S, Golmakani A. Binary equilibrium adsorption data and comparison of zeolites with activated carbon for selective adsorption of CO2 from CH4[J]. Adsorption Science & Technology, 2014, 32(9): 707-716. |
46 | Xu X L, Zhao X X, Sun L B, et al. Adsorption separation of carbon dioxide, methane, and nitrogen on Hβ and Na-exchanged β-zeolite[J]. Journal of Natural Gas Chemistry, 2008, 17(4): 391-396. |
47 | Belmabkhout Y, Sayari A. Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure(Ⅱ): Adsorption of CO2/N2, CO2/CH4 and CO2/H2 binary mixtures[J]. Chemical Engineering Science, 2009, 64(17): 3729-3735. |
48 | Belmabkhout Y, de Weireld G, Sayari A. Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas[J]. Langmuir, 2009, 25(23): 13275-13278. |
49 | Liu X W, Li J W, Zhou L, et al. Adsorption of CO2, CH4 and N2 on ordered mesoporous silica molecular sieve[J]. Chemical Physics Letters, 2005, 415(4/5/6): 198-201. |
50 | Bao Z B, Yu L, Ren Q L, et al. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework[J]. Journal of Colloid and Interface Science, 2011, 353(2): 549-556. |
51 | Jiang J J, Lu Z Y, Zhang M X, et al. Higher symmetry multinuclear clusters of metal–organic frameworks for highly selective CO2 capture[J]. Journal of the American Chemical Society, 2018, 140(51): 17825-17829. |
52 | Bhunia A, Boldog I, Möller A, et al. Highly stable nanoporous covalent triazine-based frameworks with an adamantane core for carbon dioxide sorption and separation[J]. Journal of Materials Chemistry A, 2013, 1(47): 14990. |
53 | Zeng Y F, Zou R Q, Zhao Y L. Covalent organic frameworks for CO2 capture[J]. Advanced Materials, 2016, 28(15): 2855-2873. |
54 | Wang Q, Luo J Z, Zhong Z Y, et al. CO2 capture by solid adsorbents and their applications: current status and new trends[J]. Energy Environ. Sci., 2011, 4(1): 42-55. |
55 | 王胜平, 沈辉, 范莎莎, 等. 固体二氧化碳吸附剂研究进展[J]. 化学工业与工程, 2014, 31(1): 72-78. |
Wang S P, Shen H, Fan S S, et al. Research progress of solid adsorbents for CO2 capture[J]. Chemical Industry and Engineering, 2014, 31(1): 72-78. | |
56 | Pardakhti M, Jafari T, Tobin Z, et al. Trends in solid adsorbent materials development for CO2 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34533-34559. |
57 | 王春燕, 杨莉娜, 王念榕, 等. 变压吸附技术在天然气脱除CO2上的应用探讨[J]. 石油规划设计, 2013, 24(1): 52-55. |
Wang C Y, Yang L N, Wang N R, et al. Investigation of PSA technology applying to CO2 removal from natural gas[J]. Petroleum Planning & Engineering, 2013, 24(1): 52-55. | |
58 | 任德庆, 高洪波, 纪文明. 变压吸附脱碳技术在高含二氧化碳天然气开发应用[J]. 中国石油和化工标准与质量, 2012, 33(16): 146-147. |
Ren D Q, Gao H B, Ji W M. Development and application of PSA decarbonization technology on natural gas containing full CO2 [J]. China Petroleum and Chemical Standard and Quality, 2012, 33(16): 146-147. | |
59 | Tagliabue M, Farrusseng D, Valencia S, et al. Natural gas treating by selective adsorption: material science and chemical engineering interplay[J]. Chemical Engineering Journal, 2009, 155(3): 553-566. |
60 | 李浩然. 脉动流变压吸附分离CH4/CO2实验与模拟研究[D]. 大连: 大连理工大学, 2019. |
Li H R. Study on the pulsating rheological pressure swing adsorption separation of CH4/CO2 by experiments and simulation[D]. Dalian: Dalian University of Technology, 2019. | |
61 | 陈淑花, 李浩然, 刘学武, 等. 一种脉动射流变压吸附净化气体的装置: 109647131A[P]. 2019-04-19. |
Chen S H, Li H R, Liu X W, et al. Device for purifying gas through pulsating jet pressure swing adsorption: 109647131A[P]. 2019-04-19. | |
62 | Wijmans J G, Baker R W. The solution-diffusion model: a review[J]. Journal of Membrane Science, 1995, 107(1/2): 1-21. |
63 | Monsalve-Bravo G, Bhatia S. Modeling permeation through mixed-matrix membranes: a review[J]. Processes, 2018, 6(9): 172. |
64 | Baker R W, Lokhandwala K. Natural gas processing with membranes: an overview[J]. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109-2121. |
65 | Baker R W, Low B T. Gas separation membrane materials: a perspective[J]. Macromolecules, 2014, 47(20): 6999-7013. |
66 | Vu D Q, Koros W J, Miller S J. High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes[J]. Industrial & Engineering Chemistry Research, 2002, 41(3): 367-380. |
67 | Budd P, Elabas E, Ghanem B, et al. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity[J]. Advanced Materials, 2004, 16(5): 456-459. |
68 | Budd P M, Msayib K J, Tattershall C E, et al. Gas separation membranes from polymers of intrinsic microporosity[J]. Journal of Membrane Science, 2005, 251(1/2): 263-269. |
69 | Gao Z, Wang Y N, Wu H, et al. Surface functionalization of polymers of intrinsic microporosity (PIMs) membrane by polyphenol for efficient CO2 separation[J]. Green Chemical Engineering, 2021, 2(1): 70-76. |
70 | Bezzu C G, Carta M, Tonkins A, et al. A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation[J]. Advanced Materials, 2012, 24(44): 5930-5933. |
71 | Carta M, Croad M, Malpass-Evans R, et al. Triptycene induced enhancement of membrane gas selectivity for microporous tröger's base polymers[J]. Advanced Materials, 2014, 26(21): 3526-3531. |
72 | Rose I, Bezzu C G, Carta M, et al. Polymer ultrapermeability from the inefficient packing of 2D chains[J]. Nature Materials, 2017, 16(9): 932-937. |
73 | Ghanem B S, Swaidan R, Ma X H, et al. Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves[J]. Advanced Materials, 2014, 26(39): 6696-6700. |
74 | Ghanem B S, Swaidan R, Litwiller E, et al. Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation[J]. Advanced Materials, 2014, 26(22): 3688-3692. |
75 | Rogan Y, Malpass-Evans R, Carta M, et al. A highly permeable polyimide with enhanced selectivity for membrane gas separations[J]. Journal of Materials Chemistry A, 2014, 2(14): 4874-4877. |
76 | Ma X H, Abdulhamid M, Miao X H, et al. Facile synthesis of a hydroxyl-functionalized tröger's base diamine: a new building block for high-performance polyimide gas separation membranes[J]. Macromolecules, 2017, 50(24): 9569-9576. |
77 | Shamsabadi A A, Seidi F, Nozari M, et al. A new pentiptycene-based dianhydride and its high-free-volume polymer for carbon dioxide removal[J]. ChemSusChem, 2018, 11(2): 472-482. |
78 | Wang Z G, Wang D, Zhang F, et al. Tröger's base-based microporous polyimide membranes for high-performance gas separation[J]. ACS Macro Letters, 2014, 3(7): 597-601. |
79 | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
80 | Wang Y, Ma X, Ghanem B S, et al. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations[J]. Materials Today Nano, 2018, 3: 69-95. |
81 | Park H B, Jung C H, Lee Y M, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions[J]. Science, 2007, 318(5848): 254-258. |
82 | Aguilar-Lugo C, Álvarez C, Lee Y M, et al. Thermally rearranged polybenzoxazoles containing bulky adamantyl groups from ortho-substituted precursor copolyimides[J]. Macromolecules, 2018, 51(5): 1605-1619. |
83 | Park C H, Tocci E, Lee Y M, et al. Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO)[J]. The Journal of Physical Chemistry B, 2012, 116(42): 12864-12877. |
84 | Shamsipur H, Dawood B A, Budd P M, et al. Thermally rearrangeable PIM-polyimides for gas separation membranes[J]. Macromolecules, 2014, 47(16): 5595-5606. |
85 | Kim S, Han S H, Lee Y M. Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture[J]. Journal of Membrane Science, 2012, 403/404: 169-178. |
86 | Woo K T, Lee J, Dong G X, et al. Fabrication of thermally rearranged (TR) polybenzoxazole hollow fiber membranes with superior CO2/N2 separation performance[J]. Journal of Membrane Science, 2015, 490: 129-138. |
87 | Ma C H, Koros W J. High-performance ester-crosslinked hollow fiber membranes for natural gas separations[J]. Journal of Membrane Science, 2013, 428: 251-259. |
88 | An H, Lee A S, Kammakakam I, et al. Bromination/debromination-induced thermal crosslinking of 6FDA-Durene for aggressive gas separations[J]. Journal of Membrane Science, 2018, 545: 358-366. |
89 | Li X Q, Cheng Y D, Zhang H Y, et al. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes[J]. ACS Applied Materials & Interfaces, 2015, 7(9): 5528-5537. |
90 | Xin Q P, Ouyang J, Liu T, et al. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal–organic frameworks[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1065-1077. |
91 | Wu X Y, Tian Z Z, Wang S F, et al. Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation[J]. Journal of Membrane Science, 2017, 528: 273-283. |
92 | 张鹏, 陈赞, 吴洪, 等. 石墨烯基CO2分离膜通道微环境调控研究进展[J]. 化工学报, 2020, 71(1): 54-67. |
Zhang P, Chen Z, Wu H, et al. Progress in research on channel microenvironment regulation of graphenebased CO2 separation membrane[J]. CIESC Journal, 2020, 71(1): 54-67. | |
93 | 张永军, 苑慧敏, 万书宝, 等. 天然气中二氧化碳脱除技术[J]. 化工中间体, 2008(9): 1-3. |
Zhang Y J, Yuan H M, Wan S B, et al. Technology of CO2 separated from natural gas[J]. Chemical Intermediates, 2008(9): 1-3. | |
94 | 孙洁, 徐正斌. 松南气田天然气脱碳工艺技术研究[J]. 石油天然气学报, 2010, 32(4): 325-327, 434. |
Sun J, Xu Z B. Research on natural gas decarbonization technologies in Songnan gas field[J]. Journal of Oil and Gas Technology, 2010, 32(4): 325-327, 434. | |
95 | 孟兆伟, 刘宇, 任少科. CO2分离膜在海上平台的使用[J]. 低温与特气, 2015, 33(5): 41-44, 49. |
Meng Z W, Liu Y, Ren S K. The use of CO2 separation membrane in the offshore platform[J]. Low Temperature and Specialty Gases, 2015, 33(5): 41-44, 49. | |
96 | 水思源. 巴西国油采用霍尼韦尔UOP技术处理海上天然气[J]. 石油与装备, 2013(1): 23. |
Shui S Y. Petrobras using Honeywell UOP technology to process offshore gas[J]. Petroleun & Equipment, 2013(1): 23-23. | |
97 | Honeywell-UOP. UOP SeparexTM Membrane Technology[EB/OL]. . |
98 | Song C F, Liu Q L, Ji N, et al. Alternative pathways for efficient CO2 capture by hybrid processes—a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 215-231. |
99 | 胡苏阳, 花亦怀, 李秋英, 等. 天然气膜分离脱碳技术评述[J]. 石化技术, 2021, 28(5): 54-55, 57. |
Hu S Y, Hua Y H, Li Q Y, et al. Review on membrane separation and decarbonization technology of natural gas[J]. Petrochemical Industry Technology, 2021, 28(5): 54-55, 57. | |
100 | 龙小军. TBAB和TEAB存在下水合物法生物气脱碳技术研究[D]. 广州: 华南理工大学, 2017. |
Long X J. Study on hydrate based biogas decarburization technology in the presence of TBAB and TEAB[D]. Guangzhou: South China University of Technology, 2017. | |
101 | Xu C G, Yu Y S, Ding Y L, et al. The effect of hydrate promoters on gas uptake[J]. Physical Chemistry Chemical Physics, 2017, 19(32): 21769-21776. |
102 | Zhang X X, Liu H, Sun C Y, et al. Effect of water content on separation of CO2/CH4 with active carbon by adsorption-hydration hybrid method[J]. Separation and Purification Technology, 2014, 130: 132-140. |
103 | Xu C G, Li X S, Yan K F, et al. Research progress in hydrate-based technologies and processes in China: a review[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 1998-2013. |
104 | 孙文娟, 曹学文, 杨文, 等. 超声速喷管在天然气脱碳中的应用初探[J]. 天然气化工(C1化学与化工), 2017, 42(2): 101-105. |
Sun W J, Cao X W, Yang W, et al. Research on the application of supersonic nozzle in natural gas decarburization[J]. Natural Gas Chemical Industry, 2017, 42(2): 101-105. | |
105 | Chen J N, Jiang W M, Han C Y, et al. Study on supersonic swirling condensation characteristics of CO2 in Laval nozzle[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103672. |
106 | Chen J N, Jiang W M, Han C Y, et al. Numerical study on the influence of supersonic nozzle structure on the swirling condensation characteristics of CO2[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103753. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[3] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[4] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[5] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[6] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[7] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[8] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[9] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[10] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[11] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[12] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[13] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[14] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[15] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1408
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1384
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||