CIESC Journal ›› 2024, Vol. 75 ›› Issue (2): 675-684.DOI: 10.11949/0438-1157.20231039
• Energy and environmental engineering • Previous Articles Next Articles
Xin ZHANG(), Yu XUE, Yixing MA(), Xueqian WANG, Langlang WANG, Nifei XIE, Yi CHEN, Xiaoxia ZHOU
Received:
2023-10-08
Revised:
2024-01-22
Online:
2024-04-10
Published:
2024-02-25
Contact:
Yixing MA
张欣(), 薛宇, 马懿星(), 王学谦, 王郎郎, 谢妮霏, 陈怡, 周晓霞
通讯作者:
马懿星
作者简介:
张欣(1999—),女,硕士研究生,2411621385@qq.com
基金资助:
CLC Number:
Xin ZHANG, Yu XUE, Yixing MA, Xueqian WANG, Langlang WANG, Nifei XIE, Yi CHEN, Xiaoxia ZHOU. Purification mechanism of hydrogen cyanide by corona discharge and dielectric barrier discharge[J]. CIESC Journal, 2024, 75(2): 675-684.
张欣, 薛宇, 马懿星, 王学谦, 王郎郎, 谢妮霏, 陈怡, 周晓霞. 电晕放电与介质阻挡放电净化氰化氢的机理[J]. 化工学报, 2024, 75(2): 675-684.
Add to citation manager EndNote|Ris|BibTeX
处理技术 | 脱除 效果/% | 操作温度 | 优点 | 缺点 |
---|---|---|---|---|
吸收法 | 90~98 | 常温 | 技术成熟 | 吸附容量有限,回收处理难 |
吸附法 | 80~90 | 60℃以下 | 能耗低,处理效率高 | 吸附剂脱附过程复杂 |
燃烧法 | 60~70 | 700℃ | 过程简单 | 运行成本高,易产生二次污染 |
催化氧化法 | 75~98 | 250℃以上 | 应用广泛,处理彻底 | 贵金属成本较高,催化剂易中毒 |
催化水解法 | 95~99 | 200℃以下 | 能耗低,简化处理方式 | 工业化应用还在实验中 |
等离子体净化法(本文) | 74~94 | 低温(60℃以下) | 同时处理多种污染物,处理效率高 | 仍然处于实验与理论研究阶段,无法进行工业实际应用 |
Table 1 Comparison of advantages and disadvantages of different methods for purifying HCN
处理技术 | 脱除 效果/% | 操作温度 | 优点 | 缺点 |
---|---|---|---|---|
吸收法 | 90~98 | 常温 | 技术成熟 | 吸附容量有限,回收处理难 |
吸附法 | 80~90 | 60℃以下 | 能耗低,处理效率高 | 吸附剂脱附过程复杂 |
燃烧法 | 60~70 | 700℃ | 过程简单 | 运行成本高,易产生二次污染 |
催化氧化法 | 75~98 | 250℃以上 | 应用广泛,处理彻底 | 贵金属成本较高,催化剂易中毒 |
催化水解法 | 95~99 | 200℃以下 | 能耗低,简化处理方式 | 工业化应用还在实验中 |
等离子体净化法(本文) | 74~94 | 低温(60℃以下) | 同时处理多种污染物,处理效率高 | 仍然处于实验与理论研究阶段,无法进行工业实际应用 |
序号 | 化学方程式 | 反应能垒/(kJ/mol) |
---|---|---|
电晕放电 | ||
① | HCN+O2 | 264.9 |
② | OH+HCN | 64.5 |
③ | OCN+·O | 132.5 |
④ | 2OCN | 164.9 |
⑤ | 2NO+O2 | 326.9 |
⑥ | 2CO+O2 | 196.3 |
介质阻挡放电 | ||
① | HCN+O2 | 249.7 |
② | 2OCN | 158.9 |
③ | OCN+·O | 56.9 |
④ | OH+HCN | 46.3 |
⑤ | CNC3N4 | 423.6 |
⑥ | H2O+HCN | 284.0 |
⑦ | 2NH3 | 234.6 |
Table 2 Reaction equations and energy barriers of corona discharge and dielectric barrier discharge
序号 | 化学方程式 | 反应能垒/(kJ/mol) |
---|---|---|
电晕放电 | ||
① | HCN+O2 | 264.9 |
② | OH+HCN | 64.5 |
③ | OCN+·O | 132.5 |
④ | 2OCN | 164.9 |
⑤ | 2NO+O2 | 326.9 |
⑥ | 2CO+O2 | 196.3 |
介质阻挡放电 | ||
① | HCN+O2 | 249.7 |
② | 2OCN | 158.9 |
③ | OCN+·O | 56.9 |
④ | OH+HCN | 46.3 |
⑤ | CNC3N4 | 423.6 |
⑥ | H2O+HCN | 284.0 |
⑦ | 2NH3 | 234.6 |
1 | 蒋明, 宁平, 王重华, 等. 含氰化氢废气治理研究进展[J]. 化工进展, 2012, 31(11): 2563-2569. |
Jiang M, Ning P, Wang Z H, et al. Research progress of HCN-containing exhaust gas treatment[J]. Chemical Industry and Engineering Progress, 2012, 31(11): 2563-2569. | |
2 | Wang Z H, Jiang M, Ning P, et al. Thermodynamic modeling and gaseous pollution prediction of the yellow phosphorus production[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 12194-12202. |
3 | Yuan S, Zhou Z J, Li J, et al. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J]. Energy & Fuels, 2010, 24(11): 6166-6171. |
4 | Jiang M, Wang Z H, Ning P, et al. Dust removal and purification of calcium carbide furnace off-gas[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(3): 901-907. |
5 | 张艳琨, 杨春晓, 张可欣, 等. HCN气体在金属Cu、Zn表面吸附的密度泛函研究[J]. 原子与分子物理学报, 2021, 38(6): 47-52. |
Zhang Y K, Yang C X, Zhang K X, et al. Density functional study of HCN gas adsorption on Cu and Zn surfaces[J]. Journal of Atomic and Molecular Physics, 2021, 38(6): 47-52. | |
6 | Li Y J, Zhao Q, Yang H, et al. Adsorption performance of gaseous HCN on Ni/Al hydrotalcite-derived oxides[J]. Journal of Chemical Engineering of Japan, 2019, 52(5): 392-400. |
7 | Arani B O, Frouzakis C E, Mantzaras J, et al. Direct numerical simulation of turbulent channel-flow catalytic combustion: effects of Reynolds number and catalytic reactivity[J]. Combustion and Flame, 2018, 187: 52-66. |
8 | Schäfer S, Bonn B. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion(Part 1): Homogeneous reactions[J]. Fuel, 2000, 79(10): 1239-1246. |
9 | Wang L L, Wang X Q, Cheng J H, et al. Coupling catalytic hydrolysis and oxidation on Mn/TiO2-Al2O3 for HCN removal[J]. Applied Surface Science, 2018, 439: 213-221. |
10 | Wang X Q, Cheng J H, Wang X Y, et al. Mn based catalysts for driving high performance of HCN catalytic oxidation to N2 under micro-oxygen and low temperature conditions[J]. Chemical Engineering Journal, 2018, 333: 402-413. |
11 | Hu Y N, Liu J P, Cheng J H, et al. Coupling catalytic hydrolysis and oxidation of HCN over HZSM-5 modified by metal (Fe, Cu) oxides[J]. Applied Surface Science, 2018, 427: 843-850. |
12 | Wang Q, Wang X Q, Wang L L, et al. Catalytic oxidation and hydrolysis of HCN over La x Cu y /TiO2 catalysts at low temperatures[J]. Microporous and Mesoporous Materials, 2019, 282: 260-268. |
13 | Wang X Q, Jing X L, Wang F, et al. Coupling catalytic hydrolysis and oxidation on metal-modified activated carbon for HCN removal[J]. RSC Advances, 2016, 6(62): 57108-57116. |
14 | 王明飞. La-TiO2催化剂低温催化水解氰化氢的研究[D]. 昆明: 昆明理工大学, 2022. |
Wang M F. Study on catalytic hydrolysis of hydrogen cyanide with La-TiO2 catalyst at low temperature[D]. Kunming: Kunming University of Science and Technology, 2022. | |
15 | Hinde P, Demidyuk V, Gkelios A, et al. Plasma catalysis: a review of the interdisciplinary challenges faced: realising the potential of plasma catalysis on a commercial scale[J]. Johnson Matthey Technology Review, 2020, 64(2): 138-147. |
16 | Zhu X B, Gao X, Qin R, et al. Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor[J]. Applied Catalysis B: Environmental, 2015, 170/171: 293-300. |
17 | 徐明铭. 空气湿度对直流电晕放电影响的研究[D]. 济南: 山东大学, 2014. |
Xu M M. Study on influences of air humidity on direct current corona discharge[D]. Jinan: Shandong University, 2014. | |
18 | Wang X Q, Xu K, Ma Y X, et al. Simultaneous removal of H2S and dust in the tail gas by DC corona plasma[J]. Plasma Chemistry and Plasma Processing, 2016, 36(6): 1545-1558. |
19 | 赵艳辉, 周建刚, 吴晓东, 等. 不同结构介质阻挡放电的放电特性[J]. 大连海事大学学报, 2004, 30(3): 59-61, 87. |
Zhao Y H, Zhou J G, Wu X D, et al. Study on discharge characteristic of different configurable DBD[J]. Journal of Dalian Maritime University, 2004, 30(3): 59-61, 87. | |
20 | Kok D H K, Ibrahim R K R, Toemen S, et al. The catalytic efficiency of Ru/Mn/Ce-Al2O3 in the reduction of HCN in dry methane reforming with CO2 assisted by non-thermal plasma[J]. Journal of Physics: Conference Series, 2023, 2432(1): 012011. |
21 | Mohan N, Vijayalakshmi K P, Koga N, et al. Comparison of aromatic NH···π, OH···π, and CH···π interactions of alanine using MP2, CCSD, and DFT methods[J]. Journal of Computational Chemistry, 2010, 31(16): 2874-2882. |
22 | Devlin F J, Stephens P J. Ab initio density functional theory study of the structure and vibrational spectra of cyclohexanone and its isotopomers[J]. The Journal of Physical Chemistry A, 1999, 103(4): 527-538. |
23 | Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy[J]. Physical Chemistry Chemical Physics: PCCP, 2005, 7(18): 3297-3305. |
24 | Neitola R, Pakkanen T A. Ab initio studies on nanoscale friction between fluorinated diamond surfaces: effect of model size and level of theory[J]. The Journal of Physical Chemistry B, 2006, 110(33): 16660-16665. |
25 | 纪红兵, 许建华, 谢俊锋, 等. 原位DRIFTS研究CH4部分氧化和CO2重整的耦合[J]. 光谱学与光谱分析, 2008, 28(6): 1246-1250. |
Ji H B, Xu J H, Xie J F, et al. In-situ DRIFTS study of coupling partial oxidation of methane and carbon dioxide reforming[J]. Spectroscopy and Spectral Analysis, 2008, 28(6): 1246-1250. | |
26 | Lu N, Bao X D, Jiang N, et al. Non-thermal plasma-assisted catalytic dry reforming of methane and carbon dioxide over G-C3N4-based catalyst[J]. Topics in Catalysis, 2017, 60(12): 855-868. |
27 | Zhang Q Z, Zhang R Q, Chan K S, et al. Ab initio and variational transition state approach to β-C3N4 formation: kinetics for the reaction of CH3NH2 with H[J]. The Journal of Physical Chemistry A, 2005, 109(40): 9112-9117. |
28 | 暴晓丁. DBD等离子体协同g-C3N4基催化剂转化温室气体研究[D]. 大连: 大连理工大学, 2017. |
Bao X D. Study on the transformation of greenhouse gases by DBD plasma with g-C3N4 based catalyst[D]. Dalian: Dalian University of Technology, 2017. | |
29 | Ray D, Chawdhury P, Subrahmanyam C. A facile method to decompose CO2 using a g-C3N4-assisted DBD plasma reactor[J]. Environmental Research, 2020, 183: 109286. |
30 | Dong H, Guo X T, Yang C, et al. Synthesis of g-C3N4 by different precursors under burning explosion effect and its photocatalytic degradation for tylosin[J]. Applied Catalysis B: Environmental, 2018, 230: 65-76. |
31 | Manzetti S, Lu T. Alternant conjugated oligomers with tunable and narrow HOMO-LUMO gaps as sustainable nanowires[J]. RSC Advances, 2013, 3(48): 25881-25890. |
32 | Crowley J M, Tahir-Kheli J, Goddard W A. Resolution of the band gap prediction problem for materials design[J]. The Journal of Physical Chemistry Letters, 2016, 7(7): 1198-1203. |
[1] | Kun LIU, Yuan YIN, Wenqiang GENG, Haotian XIA. Study on nitrogen fixation performance and mechanism analysis of dielectric barrier discharge under different operating parameters [J]. CIESC Journal, 2022, 73(9): 4045-4053. |
[2] | Feng DU, Siqi YIN, Hui LUO, Wenan DENG, Chuan LI, Zhenwei HUANG, Wenjing WANG. Study on size effect of H2 adsorption and dissociation on Mo x S y clusters [J]. CIESC Journal, 2022, 73(9): 3895-3903. |
[3] | Xiaqi YU, Ge FENG, Jinyan ZHAO, Jiayuan LI, Shengwei DENG, Jingnan ZHENG, Wenwen LI, Yaqiu WANG, Lan SHEN, Xu LIU, Weiwei XU, Jianguo WANG, Shibin WANG, Zihao YAO, Chengli MAO. A first-principles study of the interaction between TDI-TMP-T313 and AP [J]. CIESC Journal, 2022, 73(8): 3511-3517. |
[4] | Jihao ZHAO, Weiqiang TANG, Xiaofei XU, Shuangliang ZHAO, Jionghao HE. Adsorption energy of bonding agent on nano-filler in polymer composites [J]. CIESC Journal, 2022, 73(7): 3174-3181. |
[5] | Xiaoxi WANG, Xiaoyan LI, Baowei WANG. Decomposition of carbon dioxide via dielectric barrier discharge microplasma [J]. CIESC Journal, 2022, 73(3): 1343-1350. |
[6] | Xiaokun HE, Yuan XUE, Ran ZUO. Quantum chemistry study on gas reaction path in InN MOCVD growth [J]. CIESC Journal, 2022, 73(12): 5638-5647. |
[7] | Xiaosong LUO, Jinbao HUANG, Mei ZHOU, Xin MU, Weiwei XU, Lei WU. Theoretical study on the mechanism of hydrolysis/alcoholysis/ammonolysis of butanediol terephthalate dimer [J]. CIESC Journal, 2022, 73(11): 4859-4871. |
[8] | Xiang GONG, Linsen LI, Zhao JIANG. Employing PdCo/SiO2 catalyst in high activity dehydrogenation reaction of heterocyclic H2 storage carrier [J]. CIESC Journal, 2022, 73(10): 4448-4460. |
[9] | Xianhui ZHU, Fu WANG, Jiecheng XIA, Jinliang YUAN. Density functional theory investigation on the NH3 and CO2 absorption by functional ionic liquids [J]. CIESC Journal, 2022, 73(10): 4324-4334. |
[10] | Shenggui MA, Bowen TIAN, Yuwei ZHOU, Lin CHEN, Xia JIANG, Tao GAO. DFT study of adsorption of H2S on N-doped Stone-Wales defected graphene [J]. CIESC Journal, 2021, 72(9): 4496-4503. |
[11] | ZHANG Fangfang, HAN Min, ZHAO Juan, LING Lixia, ZHANG Riguang, WANG Baojun. DFT study on reduction of NO over Pd atom anchored on single-vacancy graphene [J]. CIESC Journal, 2021, 72(3): 1382-1391. |
[12] | TANG Weiqiang, XIE Peng, XU Xiaofei, ZHAO Shuangliang. Development and applications of reaction density functional theory [J]. CIESC Journal, 2021, 72(2): 633-652. |
[13] | GE Bingqing, YIN Yixuan, WANG Yaxi, ZHANG Hongwei, YUAN Pei. Study of solvent effect on the dissolution, size, structure and catalytic hydrogenation of nitrile butadiene rubber [J]. CIESC Journal, 2021, 72(1): 543-554. |
[14] | Jiaxin LIU, Yu XU, Er HUA. Structure and hydrogen bonding study on acylamino acid protic ionic liquids composed of 2-N-ethylhexylethylenediaminim cation with acylalanineate anions [J]. CIESC Journal, 2020, 71(S1): 15-22. |
[15] | Ling DI, Fang CHEN, Rongrong FU, Chen YANG, Yang XING, Xiaoning WANG. Mechanism research of organic pesticides detection by rich electronic LMOF [J]. CIESC Journal, 2020, 71(8): 3830-3838. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||