CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4736-4748.DOI: 10.11949/0438-1157.20240635
• Energy and environmental engineering • Previous Articles Next Articles
Ning LIANG1(), Shouyu ZHANG1(
), Simeng LIU1, Jiantian HUANG1, Bangyong LYU1, Chuke YANG1, Nan HU2, Yuxin WU3
Received:
2024-06-07
Revised:
2024-07-17
Online:
2025-01-03
Published:
2024-12-25
Contact:
Shouyu ZHANG
梁宁1(), 张守玉1(
), 刘思梦1, 黄健添1, 吕邦勇1, 杨楚轲1, 胡南2, 吴玉新3
通讯作者:
张守玉
作者简介:
梁宁(1996—),女,硕士研究生,1677633263@qq.com
基金资助:
CLC Number:
Ning LIANG, Shouyu ZHANG, Simeng LIU, Jiantian HUANG, Bangyong LYU, Chuke YANG, Nan HU, Yuxin WU. Evolution mechanism of cellulose during hydrothermal process based on ReaxFF force field[J]. CIESC Journal, 2024, 75(12): 4736-4748.
梁宁, 张守玉, 刘思梦, 黄健添, 吕邦勇, 杨楚轲, 胡南, 吴玉新. 基于ReaxFF力场的纤维素水热过程机理[J]. 化工学报, 2024, 75(12): 4736-4748.
1 | 何笑, 刘晶晶, 李文瑶, 等. 玉米秸秆化学链热解过程铁基复合载氧体的载氧-催化性能[J]. 化工学报, 2023, 74(10): 4153-4163. |
He X, Liu J J, Li W Y, et al. Oxygen-carrying and catalytic properties of iron-based composite oxygen carrier for chemical looping pyrolysis of corn stalk[J]. CIESC Journal, 2023, 74(10): 4153-4163. | |
2 | 孙梦圆, 张守玉, 王才威, 等. 棉秆水热及水热氧化过程水相产物分析研究[J]. 化工学报, 2020, 71(5): 2382-2388. |
Sun M Y, Zhang S Y, Wang C W, et al. Aqueous products prepared by hydrothermal and hydrothermal oxidation processes of cotton stalk[J]. CIESC Journal, 2020, 71(5): 2382-2388. | |
3 | 杨济凡, 张守玉, 曹忠耀, 等. 水热氧化预处理对棉秆成型颗粒理化性质的影响[J]. 化工进展, 2022, 41(8): 4417-4424. |
Yang J F, Zhang S Y, Cao Z Y, et al. Effect of hydrothermal oxidation pretreatment on the physicochemical properties of fuel pellets prepared from cotton stalks[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4417-4424. | |
4 | 王雪, 徐期勇, 张超. 木质纤维素类生物质水热炭化机理及水热炭应用进展[J]. 化工进展, 2023, 42(5): 2536-2545. |
Wang X, Xu Q Y, Zhang C. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. | |
5 | Xu J Q, Zhang S Y, Shi Y, et al. Upgrading the wood vinegar prepared from the pyrolysis of biomass wastes by hydrothermal pretreatment[J]. Energy, 2022, 244: 122631. |
6 | Kruse A, Dinjus E. Hot compressed water as reaction medium and reactant properties and synthesis reactions[J]. The Journal of Supercritical Fluids, 2007, 39(3): 362-380. |
7 | Bandura A V, Lvov S N. The ionization constant of water over wide ranges of temperature and density[J]. Journal of Physical and Chemical Reference Data, 2006, 35(1): 15-30. |
8 | Wang T F, Zhai Y B, Zhu Y, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 223-247. |
9 | Liu P, Le J W, Zhang D X, et al. Free radical reaction mechanism on improving tar yield and quality derived from lignite after hydrothermal treatment[J]. Fuel, 2017, 207: 244-252. |
10 | Zhang B, von Keitz M, Valentas K. Thermal effects on hydrothermal biomass liquefaction[J]. Applied Biochemistry and Biotechnology, 2008, 147(1/2/3): 143-150. |
11 | Onda A, Ochi T, Yanagisawa K. Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal conditions[J]. Topics in Catalysis, 2009, 52(6): 801-807. |
12 | Yue R Y, An C J, Ye Z B, et al. A pH-responsive phosphoprotein surface washing fluid for cleaning oiled shoreline: performance evaluation, biotoxicity analysis, and molecular dynamic simulation[J]. Chemical Engineering Journal, 2022, 437: 135336. |
13 | van Duin A C T. Reactive molecular dynamics modeling and advanced power generation applications[C]// University Turbine Systems Research Meeting. 2010. |
14 | 韩君易, 李晓霞, 郭力, 等. ReaxFF MD模拟的物种和化学反应自动分类及可视化[J]. 计算机与应用化学, 2015, 32(5): 519-526. |
Han J Y, Li X X, Guo L, et al. Automatic classification and visualization of species and reactions obtained from ReaxFF MD simulations[J]. Computers and Applied Chemistry, 2015, 32(5): 519-526. | |
15 | Liu X Y, Wang T, Chu J C, et al. Understanding lignin gasification in supercritical water using reactive molecular dynamics simulations[J]. Renewable Energy, 2020, 161: 858-866. |
16 | Arvelos S, Abrahão O, Eponina Hori C. ReaxFF molecular dynamics study on the pyrolysis process of cyclohexanone[J]. Journal of Analytical and Applied Pyrolysis, 2019, 141: 104620. |
17 | 张守玉, 黄健添, 郎森, 等. 生物质燃料颗粒热压成型过程分析[J]. 煤炭学报, 2024, 49(2): 1123-1137. |
Zhang S Y, Huang J T, Lang S, et al. Analysis on hot briquetting mechanism of biomass fuel pellets[J]. Journal of China Coal Society, 2024, 49(2): 1123-1137. | |
18 | Sorensen M R, Voter A F. Temperature-accelerated dynamics for simulation of infrequent events[J]. The Journal of Chemical Physics, 2000, 112(21): 9599-9606. |
19 | Chenoweth K, van Duin A C T, Dasgupta S, et al. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel[J]. The Journal of Physical Chemistry A, 2009, 113(9): 1740-1746. |
20 | Jiang C H, Liang W, Li K J, et al. A reactive molecular dynamics study of thermal pyrolysis behavior and mechanisms of lignin during the hydrothermal process: the function of the water molecules[J]. Bioresource Technology, 2023, 368: 128338. |
21 | Wang G W, Liu J W, Liang W, et al. Hydrothermal carbonization mechanism of agricultural waste under different conditions: an experimental and ReaxFF molecular dynamics study[J]. Journal of the Energy Institute, 2023, 110: 101353. |
22 | Ha D T, Tran K Q, Trinh T T. New insights into the hydrothermal carbonization process of sewage sludge: a reactive molecular dynamics study[J]. Fuel, 2024, 361: 130692. |
23 | Chen C, Zhao L L, Wu X, et al. Theoretical understanding of coal char oxidation and gasification using reactive molecular dynamics simulation[J]. Fuel, 2020, 260: 116300. |
24 | Pitman M C, van Duin A C T. Dynamics of confined reactive water in smectite clay-zeolite composites[J]. Journal of the American Chemical Society, 2012, 134(6): 3042-3053. |
25 | 韩修远, 张守玉, 徐嘉庆, 等. 水热过程中杉木屑组分的演变对木醋液的影响[J]. 化工学报, 2023, 74(10): 4311-4318. |
Han X Y, Zhang S Y, Xu J Q, et al. Effect of the component evolution of Chinese fir sawdust on wood vinegar during hydrothermal process[J]. CIESC Journal, 2023, 74(10): 4311-4318. | |
26 | Borrero-López A M, Masson E, Celzard A, et al. Modelling the reactions of cellulose, hemicellulose and lignin submitted to hydrothermal treatment[J]. Industrial Crops and Products, 2018, 124: 919-930. |
27 | Fletcher T H, Kerstein A R, Pugmire R J, et al. Chemical percolation model for devolatilization. 3. Direct use of carbon-13NMR data to predict effects of coal type[J]. Energy & Fuels, 1992, 6(4): 414-431. |
28 | Zhang K, Li Y, Wang Z H, et al. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures[J]. Fuel, 2016, 185: 701-708. |
29 | Shi L, Liu Q Y, Guo X J, et al. Pyrolysis behavior and bonding information of coal—a TGA study[J]. Fuel Processing Technology, 2013, 108: 125-132. |
30 | Zhuang X Z, Zhan H, Song Y P, et al. Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC)[J]. Fuel, 2019, 236: 960-974. |
31 | Berge N D, Ro K S, Mao J D, et al. Hydrothermal carbonization of municipal waste streams[J]. Environmental Science & Technology, 2011, 45(13): 5696-5703. |
32 | Chen B L, Johnson E J, Chefetz B, et al. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility[J]. Environmental Science & Technology, 2005, 39(16): 6138-6146. |
33 | Reza M T, Wirth B, Lüder U, et al. Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass[J]. Bioresource Technology, 2014, 169: 352-361. |
34 | Zheng M, Li X X, Wang M J, et al. Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation[J]. Fuel, 2019, 253: 910-920. |
35 | Guo S, Gan J Y, Zhao D, et al. Investigation of the hydrothermal carbonization process of furan compounds derived from cellulose using molecular dynamics[J]. Journal of Cleaner Production, 2024, 453: 142252. |
36 | Mäkelä M, Benavente V, Fullana A. Hydrothermal carbonization of lignocellulosic biomass: effect of process conditions on hydrochar properties[J]. Applied Energy, 2015, 155: 576-584. |
37 | Zheng M, Li X X, Liu J, et al. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics[J]. Energy & Fuels, 2013, 27(6): 2942-2951. |
38 | 魏桂花. 纤维素催化氧化制甲酸的反应机理研究[D]. 唐山: 华北理工大学, 2023. |
Wei G H. Study on reaction mechanism of catalytic oxidation of cellulose to formic acid[D]. Tangshan: North China University of Science and Technology, 2023. | |
39 | 汪利平. 纤维素水热降解制备5-羟甲基糠醛的实验研究[D]. 天津: 天津大学, 2006. |
Wang L P. Experimental study on preparation of 5-hydroxymethylfurfural by hydrothermal degradation of cellulose[D]. Tianjin: Tianjin University, 2006. | |
40 | Martins-Vieira J C, Torres-Mayanga P C, Lachos-Perez D. Hydrothermal processing of lignocellulosic biomass: an overview of subcritical and supercritical water hydrolysis[J]. BioEnergy Research, 2023, 16(3): 1296-1317. |
41 | Ogihara Y, Smith R L, Inomata H, et al. Direct observation of cellulose dissolution in subcritical and supercritical water over a wide range of water densities (550—1000 kg/m3)[J]. Cellulose, 2005, 12(6): 595-606. |
42 | Guo S, Xu D D, Guo X, et al. Theoretical modeling of hydrochar precursor formation during the hydrothermal carbonization of sewage sludge[J]. Fuel Processing Technology, 2022, 231: 107212. |
43 | Guo S, Xiao W N, Zhao D, et al. Water-catalyzed conversion of glucose to small molecules during hydrothermal carbonization: a density functional theory study[J]. Sustainable Energy & Fuels, 2023, 7(5): 1322-1332. |
44 | Kabyemela B M, Adschiri T, Malaluan R, et al. Degradation kinetics of dihydroxyacetone and glyceraldehyde in subcritical and supercritical water[J]. Industrial & Engineering Chemistry Research, 1997, 36(6): 2025-2030. |
45 | Ehara K, Saka S. Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments[J]. Journal of Wood Science, 2005, 51(2): 148-153. |
46 | 张亚运. 木质纤维素热化学转化机理及裂解气体CO2和H2吸附分离的分子模拟研究[D]. 重庆: 重庆大学, 2017. |
Zhang Y Y. Study on thermochemical transformation mechanism of lignocellulose and molecular simulation of adsorption and separation of pyrolysis gases CO2 and H2 [D]. Chongqing: Chongqing University, 2017. | |
47 | Sasaki M, Goto K, Tajima K, et al. Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water[J]. Green Chemistry, 2002, 4(3): 285-287. |
[1] | Wuling ZHAO, Yi MAN. Research on framework of nanocellulose molecular structure prediction model based on variational encoder [J]. CIESC Journal, 2024, 75(9): 3221-3230. |
[2] | Xuehong WU, Xin WEI, Jiawen HOU, Cai LYU, Yong LIU, He LIU, Zhijuan CHANG. Preparation of carbon nanotubes by pyrolysis method and their application in heat dissipation coatings [J]. CIESC Journal, 2024, 75(9): 3360-3368. |
[3] | Xianggang ZHANG, Yulong CHANG, Hualin WANG, Xia JIANG. Low energy consumption non-phase change second drying of waste straw and other biomass [J]. CIESC Journal, 2024, 75(7): 2433-2445. |
[4] | Yiqi ZHANG, Xuesong TAN, Wuhuan LI, Quan ZHANG, Changlin MIAO, Xinshu ZHUANG. Efficient fractionation of sugarcane bagasse with phenoxyethanol under mild condition [J]. CIESC Journal, 2024, 75(6): 2274-2282. |
[5] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[6] | Xiangfei DING, Xiaolin QIU, Xicheng ZHU, Jiawei ZHANG, Jinhua CHEN. Preparation and properties of pH-responsive gas permeable CNC/PBAT composite membranes [J]. CIESC Journal, 2024, 75(3): 1040-1051. |
[7] | Yibin DONG, Jingchao XIONG, Jingyu WANG, Shoukang WANG, Yafei WANG, Qunxing HUANG. LiDAR measurement based on model predictive control for boiler combustion optimization [J]. CIESC Journal, 2024, 75(3): 924-935. |
[8] | Wenxian GUO, Yan ZHANG, Yun ZHANG, Caizhi DENG, Jinyu SHI, Meiqiong CHEN, Min ZHANG, Faliang CHENG. High-performance microbial fuel cell based on activated biomass carbon aerogel [J]. CIESC Journal, 2024, 75(12): 4793-4803. |
[9] | Qishun LIU, Deyu CHU, Jinjing MA, Heng YIN. Advancements and obstacles in the production of nitrogen-containing bio-based chemicals from chitin biomass [J]. CIESC Journal, 2024, 75(11): 4065-4081. |
[10] | Gen LIU, Zhongshun SUN, Bo ZHANG, Rongjiang ZHANG, Zhiqiang WU, Bolun YANG. Establishment of machine learning-driven biomass pyrolysis model and optimization of volatiles chemical looping reforming hydrogen production process [J]. CIESC Journal, 2024, 75(11): 4333-4347. |
[11] | Mi FENG, Jie ZHANG, Xingmei LYU. One-step extraction and separation of high purity chitin based on choline ionic liquid [J]. CIESC Journal, 2024, 75(11): 4286-4297. |
[12] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[13] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[14] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[15] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||