CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 1111-1119.DOI: 10.11949/0438-1157.20240979
• Process system engineering • Previous Articles Next Articles
Received:
2024-09-02
Revised:
2024-10-06
Online:
2025-03-28
Published:
2025-03-25
Contact:
Guilian LIU
通讯作者:
刘桂莲
作者简介:
赵丽文(1998—),女,博士研究生,zhaoliwen1234@stu.xjtu.edu.cn
基金资助:
CLC Number:
Liwen ZHAO, Guilian LIU. Performance enhancement and parameter optimization of complex catalytic reaction system based on system integration[J]. CIESC Journal, 2025, 76(3): 1111-1119.
赵丽文, 刘桂莲. 基于系统集成的复杂催化反应系统性能强化及参数优化[J]. 化工学报, 2025, 76(3): 1111-1119.
扰动流 | 公用工程变化量 | |
---|---|---|
位置 | 性质 | |
夹点上 | 源 | ΔHHU=ΔCP(TT-TS)+(CP+ΔCP)(ΔTT-ΔTS) ΔHCU=0 |
阱 | ||
夹点下 | 源 | ΔHHU=0 ΔHCU=ΔCP(TS-TT)+(CP+ΔCP)(ΔTS-ΔTT) |
阱 | ||
跨夹点 | 源 | ΔHHU=ΔCP(TP-TS-ΔTS)-CPΔTS ΔHCU=ΔCP(TP-TT-ΔTT)-CPΔTT |
阱 | ΔHHU=CPΔTT+ΔCP(TT+ΔTT-TP) ΔHCU=CPΔTS+ΔCP(TS+ΔTS-TP) |
Table 1 Effect of single stream’s parameter variation on HEN’s utility demand[23]
扰动流 | 公用工程变化量 | |
---|---|---|
位置 | 性质 | |
夹点上 | 源 | ΔHHU=ΔCP(TT-TS)+(CP+ΔCP)(ΔTT-ΔTS) ΔHCU=0 |
阱 | ||
夹点下 | 源 | ΔHHU=0 ΔHCU=ΔCP(TS-TT)+(CP+ΔCP)(ΔTS-ΔTT) |
阱 | ||
跨夹点 | 源 | ΔHHU=ΔCP(TP-TS-ΔTS)-CPΔTS ΔHCU=ΔCP(TP-TT-ΔTT)-CPΔTT |
阱 | ΔHHU=CPΔTT+ΔCP(TT+ΔTT-TP) ΔHCU=CPΔTS+ΔCP(TS+ΔTS-TP) |
1 | Hagen J. Industrial Catalysis[M]. Weinheim, Germany: Wiley, 2015. |
2 | Shakor Z M, Al-Shafei E N. The mathematical catalyst deactivation models: a mini review[J]. RSC Advances, 2023, 13(32): 22579-22592. |
3 | Al-Rumaihi A, Shahbaz M, Mckay G, et al. A review of pyrolysis technologies and feedstock: a blending approach for plastic and biomass towards optimum biochar yield[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112715. |
4 | Smith R. Chemical Process Design and Integration [M]. 2nd ed. Chichester, West Sussex, United Kingdom: Wiley, 2016. |
5 | Xie T, Zhang Z Y, Zheng H Y, et al. Performance optimization of a cavity type concentrated solar reactor for methane dry reforming reaction with coupled optics-CFD modeling[J]. Chemical Engineering Science, 2023, 275: 118737. |
6 | Yadav D, Lu X L, Vishwakarma C B, et al. Advancements in microreactor technology for hydrogen production via steam reforming: a comprehensive review of experimental studies[J]. Journal of Power Sources, 2023, 585: 233621. |
7 | Ribeiro A T S, Araújo Í R S, da Silva E F M, et al. Improvement of Ni-based catalyst properties and activity for dry reforming of methane by application of all-in-one preparation method[J]. Journal of Materials Science, 2023, 58(8): 3568-3581. |
8 | Gao N B, Salisu J, Quan C, et al. Modified nickel-based catalysts for improved steam reforming of biomass tar: a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111023. |
9 | Garcia I, Santamaria L, Lopez G, et al. Steps to understand the role played by the main operating conditions in the oxidative steam reforming of biomass fast pyrolysis volatiles[J]. Chemical Engineering Journal, 2023, 475: 146223. |
10 | Santamaria L, Lopez G, Fernandez E, et al. Progress on catalyst development for the steam reforming of biomass and waste plastics pyrolysis volatiles: a review[J]. Energy & Fuels, 2021, 35(21): 17051-17084. |
11 | Zhang X R, Zhu X R, Bo S W, et al. Identifying and tailoring C—N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst[J]. Nature Communications, 2022, 13(1): 5337. |
12 | Navarrete L F, Atienza-Martínez M, Reyero I, et al. Comparative study of supported Ni and co catalysts prepared using the all-in-one method in the hydrogenation of CO2: effects of using (poly)vinyl alcohol (PVA) as an additive[J]. Catalysts, 2024, 14(1): 47. |
24 | Fogler H S. Elements of Chemical Reaction Engineering [M]. 6th ed. Boston: Pearson, 2020. |
25 | Chen Z H, Sun H J, Peng Z K, et al. Selective hydrogenation of benzene: progress of understanding for the Ru-based catalytic system design[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 13794-13803. |
26 | 孙海杰, 李永宇, 李帅辉, 等. Ru-Zn催化剂上苯选择加氢制环己烯中试及其N中毒和再生[J]. 石油化工, 2014, 43(10): 1137-1143. |
Sun H J, Li Y Y, Li S H, et al. Performance of Ru-Zn catalyst for selective hydrogenation of benzene to cyclohexene in a pilot plant: N poisoning and regeneration[J]. Petrochemical Technology, 2014, 43(10): 1137-1143. | |
27 | 刘寿长, 朱伯仲, 罗鸽, 等. 苯部分加氢制环己烯的非晶态Ru-M-B/ZrO2催化剂的表征[J]. 分子催化, 2002, 16(3): 217-222. |
Liu S C, Zhu B, Luo G, et al. Characterization of amorphous Ru-M-B/ZrO2 catalysts for partial hydrogenation of benzene to cyclohexene[J]. Journal of Molecular Catalysis, 2002, 16(3): 217-222. | |
28 | 刘寿长, 罗鸽, 王海荣, 等. 液相法Ru-M-B/ZrO2催化苯选择加氢制环己烯反应条件的研究[J]. 催化学报, 2002, 23(4): 317-320. |
Liu S C, Luo G, Wang H R, et al. Study on operation conditions for liquid phase selective hydrogenation of benzene to cyclohexene over Ru-M-B/ZrO2 catalyst[J]. Chinese Journal of Catalysis, 2002, 23(4): 317-320. | |
13 | García-Moncada N, Cents T, van Rooij G, et al. Minimizing carbon deposition in plasma-induced methane coupling with structured hydrogenation catalysts[J]. Journal of Energy Chemistry, 2021, 58: 271-279. |
14 | Castellanos E, Valverde J L, Navarro M C. Temperature optimization in a gas reactor for the synthesis of carbon nanofibers: a numerical approach[J]. Thermal Science and Engineering Progress, 2023, 42: 101915. |
15 | Huang Y, Zhang Z H, Long Y X, et al. Hydrogen production and energy efficiency optimization of exhaust reformer for marine NG engines: a view of surface reaction kinetics[J]. Fuel, 2023, 336: 127051. |
16 | Garcia I, Lopez G, Santamaria L, et al. Biomass source influence on hydrogen production through pyrolysis and in line oxidative steam reforming[J]. ChemSusChem, 2024: e202400325. |
17 | Pafili A, Charisiou N, Douvartzides S, et al. Recent progress in the steam reforming of bio-oil for hydrogen production: a review of operating parameters, catalytic systems and technological innovations[J]. Catalysts, 2021, 11(12): 1526. |
18 | Ryu J, Maravelias C T. A generalized distillation network synthesis model[J]. Chemical Engineering Science, 2021, 244: 116766. |
19 | Zhang D, Wang P, Liu G L. A novel sensitivity analysis method for the energy consumption of coupled reactor and heat exchanger network system[J]. Energy & Fuels, 2018, 32(6): 7210-7219. |
20 | Lv D H, Liu G L. Optimization of distillation sequence based on integration of reaction-separation system[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 3093-3103. |
21 | Zhang D, Lv D H, Yin C F, et al. Combined pinch and mathematical programming method for coupling integration of reactor and threshold heat exchanger network[J]. Energy, 2020, 205: 118070. |
22 | Yin C F, Sun H F, Lv D H, et al. Integrated design and optimization of reactor-distillation sequence-recycle-heat exchanger network[J]. Energy, 2022, 238: 121796. |
23 | 赵丽文, 刘桂莲. 苯加氢制环己烯装置能量系统集成及催化剂再生周期优化[J]. 化工学报, 2022, 73(12): 5494-5503. |
Zhao L W, Liu G L. Energy system integration and catalyst regeneration cycle optimization of benzene hydrogenation to cyclohexene process[J]. CIESC Journal, 2022, 73(12): 5494-5503. |
[1] | Xinying LI, Chang SU, Chao GUO, Jian PANG, Chao WANG, Chun LI. Application and optimization of CRISPR editing technology in Streptomyces [J]. CIESC Journal, 2025, 76(3): 922-932. |
[2] | Jing ZHANG, Yue YUAN, Yanmei LIU, Zhiwen WANG, Tao CHEN. Advance on the preparation of itaconic acid by biological method [J]. CIESC Journal, 2025, 76(3): 909-921. |
[3] | Ke LI, Biping XIN, Jian WEN. Sequential quadratic programming optimization of continuous variable density multi-layer insulation coupled with vapor cooled shield in liquid hydrogen storage tank [J]. CIESC Journal, 2025, 76(3): 985-994. |
[4] | Yaqi HOU, Wei ZHANG, Hong ZHANG, Feiyu GAO, Jiahua HU. Optimization of LBM multiphase flow models based on machine learning and particle swarm algorithm [J]. CIESC Journal, 2025, 76(3): 1120-1132. |
[5] | Qin SUN, Guoqing ZHOU, Wanling ZHAI, Shan GAO, Qianqian LUO, Jian QU. Heat transfer characteristics of topology optimized channel flat-plate pulsating heat pipe under local multiple heat sources [J]. CIESC Journal, 2025, 76(3): 1006-1017. |
[6] | Jinhao BAI, Xiaoping GUAN, Ning YANG. Analysis and optimization of flow characteristics in a filter-press water electrolyzer mastoid plate [J]. CIESC Journal, 2025, 76(2): 584-595. |
[7] | Nannan XIE, He CHEN, Guanghua YE, Zhongming SHU, Songbao FU, Xinggui ZHOU. Interaction of multiple impellers for gas-liquid stirred tank and optimization of their combinations [J]. CIESC Journal, 2025, 76(2): 564-575. |
[8] | Gonghan GUO, Huidian DING, Qiang LI, Shengkun JIA, Xing QIAN, Yang YUAN, Haisheng CHEN, Yiqing LUO. Dynamic Bayesian optimization method for batch distillation operation process [J]. CIESC Journal, 2025, 76(2): 755-768. |
[9] | Chao REN, Kai WANG, Jie HAN, Chunhua YANG. Event-time triggered slow time-varying industrial process dynamic scheduling method [J]. CIESC Journal, 2025, 76(1): 256-265. |
[10] | Haidong LI, Qiqi ZHANG, Lu YANG, Naeem AKRAM, Chenglin CHANG, Wenlong MO, Weifeng SHEN. Detailed design of shell-and-tube heat exchanger using intelligent evolutionary algorithms [J]. CIESC Journal, 2025, 76(1): 241-255. |
[11] | Junjie ZHANG, Yuan CHEN, Yuntang LI, Xiaolu LI, Bingqing WANG, Xudong PENG. Analysis and optimization of dynamic performance of super-elliptical hole floating seal dam compliant foil face gas seal [J]. CIESC Journal, 2025, 76(1): 296-310. |
[12] | Liming PU, Gui WANG, Chunlai ZHENG, Ke WANG, Tenglong XIANG, Zhihong WANG. Optimization and analysis of natural gas liquefaction process in mixed fluid cascade [J]. CIESC Journal, 2024, 75(S1): 267-275. |
[13] | Junfeng WANG, Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG. Liquid-phase discharge plasma decomposition of methanol for hydrogen production: optimization of electrode configuration [J]. CIESC Journal, 2024, 75(9): 3277-3286. |
[14] | Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle [J]. CIESC Journal, 2024, 75(6): 2143-2156. |
[15] | Rufeng XU, Yucheng CHEN, Dan GAO, Jingyu JIAO, Dong GAO, Haibin WANG, Shanjing YAO, Dongqiang LIN. Model-assisted process optimization of ion-exchange chromatography for monoclonal antibody charge variant separation [J]. CIESC Journal, 2024, 75(5): 1903-1911. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 137
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||