CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 922-932.DOI: 10.11949/0438-1157.20240895
• Reviews and monographs • Previous Articles Next Articles
Xinying LI1,2(), Chang SU2, Chao GUO2, Jian PANG3, Chao WANG2(
), Chun LI1,3(
)
Received:
2024-08-06
Revised:
2024-09-29
Online:
2025-03-28
Published:
2025-03-25
Contact:
Chao WANG, Chun LI
李新颖1,2(), 苏畅2, 郭超2, 庞建3, 王超2(
), 李春1,3(
)
通讯作者:
王超,李春
作者简介:
李新颖(1994—),女,博士研究生,lbxx0813@163.com
基金资助:
CLC Number:
Xinying LI, Chang SU, Chao GUO, Jian PANG, Chao WANG, Chun LI. Application and optimization of CRISPR editing technology in Streptomyces[J]. CIESC Journal, 2025, 76(3): 922-932.
李新颖, 苏畅, 郭超, 庞建, 王超, 李春. CRISPR技术在链霉菌细胞工厂中的应用和优化[J]. 化工学报, 2025, 76(3): 922-932.
优化策略 | 改进原理 | 改进说明 | 宿主 | 编辑效率 | 文献 |
---|---|---|---|---|---|
Cas蛋白改造 | 减小内切酶活性 | NickCas9(D10A) | S. rapamycinicus | 27.2%~30% | [ |
拓宽PAM位点识别范围 | FnCas12a3(EP16) | S. roseosporus | 50.0%±12.5% | [ | |
Cas蛋白筛选 | 降低Cas蛋白毒性 | FnCpf1 | S. coelicolor M145 | 87% | [ |
SaCas9 | Streptomyces sp. NRRL S-244 | 100% | [ | ||
Sth1Cas9 | S. albus J1074 | 100% | [ | ||
AsCas12j-2 | S. coelicolor A3(2) | 100% | [ | ||
AsCas12f1 | S. coelicolor M145 | 100% | [ | ||
S. hygroscopicus SIPI-054 | 67%~83% | ||||
内源:SviCas3 | S. virginiae IBL14 | — | [ | ||
内源:Type Ⅰ-E CRISPR/Cas系统 | S. avermitilis | — | [ | ||
表达水平调控 | 调控Cas蛋白的表达水平 | CUmate诱导系统 | S. coelicolor M145 | 65% | [ |
核糖体开关:茶碱诱导 | S. coelicolor M145 | 87.5% | [ | ||
纤维素二糖诱导系统 | S. coelicolor M1146 | — | [ | ||
S. lividans TK24 | — | ||||
S. albidoflavus J1074 | — | ||||
开关诱导型启动子tipA | S. coelicolor M145 | 80% | [ | ||
蓝光激活重构 | S. coelicolor M145 | 80% | |||
抗CRISPR抑制剂AcrIIA4 | S. coelicolor M145 | 65%~90% | [ | ||
修复效率 | 提高同源重组效率 | 过表达AtpD | S. coelicolor M145 | 80% | [ |
过表达RecA | Nonomuraea gerenzanensis | 100% | [ | ||
NHEJ途径 | Msm-LK、Sda-LK和Ppu-LK | S. coelicolor M145 | 20%、43.3%、56.7% | [ | |
转化效率 | 系统构建方法优化 | 诱饵DNA、Cas9和sgRNA表达质粒 | S. ambofaciens | 15%~20% | [ |
反向筛选 | 显色反应 | GusA | S. rimosus | 100% | [ |
IdgS | Verrucosispora sp. MS100137 | 100% | [ | ||
致死效应 | CodA(sm) | S. coelicolor M145 | 95%~99% | [ |
Table 1 Optimization strategies for CRISPR system in Streptomyces
优化策略 | 改进原理 | 改进说明 | 宿主 | 编辑效率 | 文献 |
---|---|---|---|---|---|
Cas蛋白改造 | 减小内切酶活性 | NickCas9(D10A) | S. rapamycinicus | 27.2%~30% | [ |
拓宽PAM位点识别范围 | FnCas12a3(EP16) | S. roseosporus | 50.0%±12.5% | [ | |
Cas蛋白筛选 | 降低Cas蛋白毒性 | FnCpf1 | S. coelicolor M145 | 87% | [ |
SaCas9 | Streptomyces sp. NRRL S-244 | 100% | [ | ||
Sth1Cas9 | S. albus J1074 | 100% | [ | ||
AsCas12j-2 | S. coelicolor A3(2) | 100% | [ | ||
AsCas12f1 | S. coelicolor M145 | 100% | [ | ||
S. hygroscopicus SIPI-054 | 67%~83% | ||||
内源:SviCas3 | S. virginiae IBL14 | — | [ | ||
内源:Type Ⅰ-E CRISPR/Cas系统 | S. avermitilis | — | [ | ||
表达水平调控 | 调控Cas蛋白的表达水平 | CUmate诱导系统 | S. coelicolor M145 | 65% | [ |
核糖体开关:茶碱诱导 | S. coelicolor M145 | 87.5% | [ | ||
纤维素二糖诱导系统 | S. coelicolor M1146 | — | [ | ||
S. lividans TK24 | — | ||||
S. albidoflavus J1074 | — | ||||
开关诱导型启动子tipA | S. coelicolor M145 | 80% | [ | ||
蓝光激活重构 | S. coelicolor M145 | 80% | |||
抗CRISPR抑制剂AcrIIA4 | S. coelicolor M145 | 65%~90% | [ | ||
修复效率 | 提高同源重组效率 | 过表达AtpD | S. coelicolor M145 | 80% | [ |
过表达RecA | Nonomuraea gerenzanensis | 100% | [ | ||
NHEJ途径 | Msm-LK、Sda-LK和Ppu-LK | S. coelicolor M145 | 20%、43.3%、56.7% | [ | |
转化效率 | 系统构建方法优化 | 诱饵DNA、Cas9和sgRNA表达质粒 | S. ambofaciens | 15%~20% | [ |
反向筛选 | 显色反应 | GusA | S. rimosus | 100% | [ |
IdgS | Verrucosispora sp. MS100137 | 100% | [ | ||
致死效应 | CodA(sm) | S. coelicolor M145 | 95%~99% | [ |
1 | Quinn G A, Banat A M, Abdelhameed A M, et al. Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery[J]. Journal of Medical Microbiology, 2020, 69(8): 1040-1048. |
2 | Alam K, Mazumder A, Sikdar S, et al. Streptomyces: the biofactory of secondary metabolites[J]. Frontiers in Microbiology, 2022, 13: 968053. |
3 | Bilyk O, Luzhetskyy A. Metabolic engineering of natural product biosynthesis in Actinobacteria[J]. Current Opinion in Biotechnology, 2016, 42: 98-107. |
4 | Zhao Y W, Li G Q, Chen Y L, et al. Challenges and advances in genome editing technologies in Streptomyces [J]. Biomolecules, 2020, 10(5): 734. |
5 | Alberti F, Corre C. Editing Streptomycete genomes in the CRISPR/Cas9 age[J]. Natural Product Reports, 2019, 36(9): 1237-1248. |
6 | Tao W X, Yang A N, Deng Z X, et al. CRISPR/Cas9-based editing of Streptomyces for discovery, characterization, and production of natural products[J]. Frontiers in Microbiology, 2018, 9: 1660. |
7 | Fluegel L L, Deng M R, Su P, et al. Development of platensimycin, platencin, and platensilin overproducers by biosynthetic pathway engineering and fermentation medium optimization[J]. Journal of Industrial Microbiology & Biotechnology, 2024, 51: kuae003. |
8 | Cobb R E, Wang Y J, Zhao H M. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system[J]. ACS Synthetic Biology, 2015, 4(6): 723-728. |
9 | Huang H, Zheng G S, Jiang W H, et al. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces [J]. Acta Biochimica et Biophysica Sinica, 2015, 47(4): 231-243. |
10 | Tong Y J, Charusanti P, Zhang L X, et al. CRISPR-Cas9 based engineering of actinomycetal genomes[J]. ACS Synthetic Biology, 2015, 4(9): 1020-1029. |
11 | Zeng H, Wen S S, Xu W, et al. Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system[J]. Applied Microbiology and Biotechnology, 2015, 99(24): 10575-10585. |
12 | Li L, Wei K K, Zheng G S, et al. CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in streptomyces[J]. Applied and Environmental Microbiology, 2018, 84(18): e00827-18. |
13 | Verwaal R, Buiting-Wiessenhaan N, Dalhuijsen S, et al. CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae [J]. Yeast, 2018, 35(2): 201-211. |
14 | Fang H, Zhao J H, Zhao X F, et al. Standardized iterative genome editing method for Escherichia coli based on CRISPR-Cas9[J]. ACS Synthetic Biology, 2024, 13(2): 613-623. |
15 | Liang Y K, Gao S, Qi X H, et al. Progress in gene editing and metabolic regulation of Saccharomyces cerevisiae with CRISPR/Cas9 tools[J]. ACS Synthetic Biology, 2024, 13(2): 428-448. |
16 | Zou Y, Qiu L, Xie A W, et al. Development and application of a rapid all-in-one plasmid CRISPR-Cas9 system for iterative genome editing in Bacillus subtilis [J]. Microbial Cell Factories, 2022, 21(1): 173. |
17 | Mu Y L, Zhang C X, Li T H, et al. Development and applications of CRISPR/Cas9-based genome editing in Lactobacillus [J]. International Journal of Molecular Sciences, 2022, 23(21): 12852. |
18 | 惠真, 唐啸宇. CRISPR/Cas9编辑系统在微生物天然产物研究中的应用[J]. 合成生物学, 2024, 5(3): 658-671. |
Hui Z, Tang X Y. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products[J]. Synthetic Biology Journal, 2024, 5(3): 658-671. | |
19 | Pait I G U, Kitani S, Roslan F W, et al. Discovery of a new diol-containing polyketide by heterologous expression of a silent biosynthetic gene cluster from Streptomyces lavendulae FRI-5[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(2): 77-87. |
20 | Hashimoto T, Hashimoto J, Kozone I, et al. Biosynthesis of quinolidomicin, the largest known macrolide of terrestrial origin: identification and heterologous expression of a biosynthetic gene cluster over 200 kb[J]. Organic Letters, 2018, 20(24): 7996-7999. |
21 | Jones A C, Gust B, Kulik A, et al. Phage p1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster[J]. PLoS One, 2013, 8(7): e69319. |
22 | Gibson D G, Young L, Chuang R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6(5): 343-345. |
23 | Colloms S D, Merrick C A, Olorunniji F J, et al. Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination[J]. Nucleic Acids Research, 2014, 42(4): e23. |
24 | Zhang W Y, Wu H R, Wang W, et al. Golden gate assembly of DNA nanostructures[J]. ACS Materials Letters, 2023, 5(12): 3316-3320. |
25 | Du D Y, Wang L, Tian Y Q, et al. Genome engineering and direct cloning of antibiotic gene clusters via phage ϕBT1 integrase-mediated site-specific recombination in Streptomyces [J]. Scientific Reports, 2015, 5: 8740. |
26 | Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6640-6645. |
27 | Fu J, Bian X Y, Hu S, et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting[J]. Nature Biotechnology, 2012, 30(5): 440-446. |
28 | Jiang W J, Zhao X J, Gabrieli T, et al. Cas9-assisted targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters[J]. Nature Communications, 2015, 6: 8101. |
29 | Wang H L, Li Z, Jia R N, et al. ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes[J]. Nucleic Acids Research, 2018, 46(5): e28. |
30 | Tao W X, Chen L, Zhao C H, et al. In vitro packaging mediated one-step targeted cloning of natural product pathway[J]. ACS Synthetic Biology, 2019, 8(9): 1991-1997. |
31 | Enghiad B, Huang C S, Guo F, et al. Cas12a-assisted precise targeted cloning using in vivo Cre-lox recombination[J]. Nature Communications, 2021, 12(1): 1171. |
32 | Liang M D, Liu L S, Xu F, et al. Activating cryptic biosynthetic gene cluster through a CRISPR-Cas12a-mediated direct cloning approach[J]. Nucleic Acids Research, 2022, 50(6): 3581-3592. |
33 | Li J Y, Liang J Y, Liu Z Y, et al. Multicopy chromosome integration and deletion of negative global regulators significantly increased the heterologous production of aborycin in Streptomyces coelicolor [J]. Marine Drugs, 2023, 21(10): 534. |
34 | Ma G L, Xin L Y, Liao Y H, et al. Characterization of the biosynthetic gene cluster and shunt products yields insights into the biosynthesis of balmoralmycin[J]. Applied and Environmental Microbiology, 2022, 88(23): e0120822. |
35 | Zhang J, Zhang D, Zhu J, et al. Efficient multiplex genome editing in Streptomyces via engineered CRISPR-Cas12a systems[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 726. |
36 | Zhang M M, Wong F T, Wang Y J, et al. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters[J]. Nature Chemical Biology, 2017, 13: 607-609. |
37 | Gu B, Kim D G, Kim D K, et al. Heterologous overproduction of oviedomycin by refactoring biosynthetic gene cluster and metabolic engineering of host strain Streptomyces coelicolor [J]. Microbial Cell Factories, 2023, 22(1): 212. |
38 | Song C Y, Luan J, Cui Q W, et al. Enhanced heterologous spinosad production from a 79-kb synthetic multioperon assembly[J]. ACS Synthetic Biology, 2019, 8(1): 137-147. |
39 | Zheng J Z, Li Y, Guan H Y, et al. Enhancement of neomycin production by engineering the entire biosynthetic gene cluster and feeding key precursors in Streptomyces fradiae CGMCC 4.576[J]. Applied Microbiology and Biotechnology, 2019, 103(5): 2263-2275. |
40 | Liu Y Q, Wang H Y, Li S S, et al. Engineering of primary metabolic pathways for titer improvement of milbemycins in Streptomyces bingchenggensis [J]. Applied Microbiology and Biotechnology, 2021, 105(5): 1875-1887. |
41 | Liu Z D, Zhu Z R, Tang J L, et al. Rna-Seq-based transcriptomic analysis of Saccharopolyspora spinosa revealed the critical function of pep phosphonomutase in the replenishment pathway[J]. Journal of Agricultural and Food Chemistry, 2020, 68(49): 14660-14669. |
42 | Ji C H, Kim H, Je H W, et al. Top-down synthetic biology approach for titer improvement of clinically important antibiotic daptomycin in Streptomyces roseosporus [J]. Metabolic Engineering, 2022, 69: 40-49. |
43 | Rang J, Li Y L, Cao L, et al. Deletion of a hybrid NRPS-T1PKS biosynthetic gene cluster via Latour gene knockout system in Saccharopolyspora pogona and its effect on butenyl-spinosyn biosynthesis and growth development[J]. Microbial Biotechnology, 2021, 14(6): 2369-2384. |
44 | Gummerlich N, Manderscheid N, Rebets Y, et al. Engineering the precursor pool to modulate the production of pamamycins in the heterologous host S. albus J1074[J]. Metabolic Engineering, 2021, 67: 11-18. |
45 | Ahmed Y, Rebets Y, Estévez M R, et al. Engineering of Streptomyces lividans for heterologous expression of secondary metabolite gene clusters[J]. Microbial Cell Factories, 2020, 19(1): 5. |
46 | Bu Q T, Li Y P, Xie H, et al. Comprehensive dissection of dispensable genomic regions in Streptomyces based on comparative analysis approach[J]. Microbial Cell Factories, 2020, 19(1): 99. |
47 | Qi L S, Larson M H, Gilbert L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183. |
48 | Cho M K, Lee B T, Kim H U, et al. Systems metabolic engineering of Streptomyces venezuelae for the enhanced production of pikromycin[J]. Biotechnology and Bioengineering, 2022, 119(8): 2250-2260. |
49 | Ameruoso A, Villegas Kcam M C, Cohen K P, et al. Activating natural product synthesis using CRISPR interference and activation systems in Streptomyces [J]. Nucleic Acids Research, 2022, 50(13): 7751-7760. |
50 | Villegas Kcam M C, Chappell J. Design, characterization, and application of targeted gene activation in bacteria using a modular CRISPRa system[J]. Methods in Molecular Biology, 2022, 2518: 203-215. |
51 | 赵亚伟, 姜卫红, 邓子新, 等. 碱基编辑器的开发及其在细菌基因组编辑中的应用[J]. 微生物学通报, 2019, 46(2): 319-331. |
Zhao Y W, Jiang W H, Deng Z X, et al. Development and application of base editors in bacterial genome editing[J]. Microbiology China, 2019, 46(2): 319-331. | |
52 | Zhao Y W, Tian J Z, Zheng G S, et al. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces [J]. Science China. Life Sciences, 2020, 63(7): 1053-1062. |
53 | Zhang Y, Yun K Y, Huang H M, et al. Antisense RNA interference-enhanced CRISPR/Cas9 base editing method for improving base editing efficiency in Streptomyces lividans 66[J]. ACS Synthetic Biology, 2021, 10(5): 1053-1063. |
54 | Billon P, Bryant E E, Joseph S A, et al. CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons[J]. Molecular Cell, 2017, 67(6): 1068-1079.e4. |
55 | Gren T, Whitford C M, Mohite O S, et al. Characterization and engineering of Streptomyces griseofuscus DSM 40191 as a potential host for heterologous expression of biosynthetic gene clusters[J]. Scientific Reports, 2021, 11: 18301. |
56 | Tong Y J, Whitford C M, Robertsen H L, et al. Highly efficient DSB-free base editing for streptomyceteswith CRISPR-BEST[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(41): 20366-20375. |
57 | Mohamed M M M, Abboud M M, Maleckis M, et al. Pepticinnamins N, O, and P, nonribosomal peptides from the soil-derived Streptomyces mirabilis P8-A2[J]. Journal of Natural Products, 2024, 87(4): 1075-1083. |
58 | Zhao Y W, Li L, Zheng G S, et al. CRISPR/dCas9-mediated multiplex gene repression in Streptomyces [J]. Biotechnology Journal, 2018, 13(9): e1800121. |
59 | Tian J Z, Yang G H, Gu Y, et al. Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces [J]. Nucleic Acids Research, 2020, 48(14): 8188-8202. |
60 | Whitford C M, Gren T, Palazzotto E, et al. Systems analysis of highly multiplexed CRISPR-base editing in streptomycetes[J]. ACS Synthetic Biology, 2023, 12(8): 2353-2366. |
61 | 黄蓉, 段燕文, 朱湘成. CRISPR/Cas9在放线菌合成生物学研究中的应用和发展[J]. 中国生物化学与分子生物学报, 2019, 35(9): 960-967. |
Huang R, Duan Y W, Zhu X C. Applications and development of CRISPR/Cas9 in synthetic biology of actinomycetes[J]. Chinese Journal of Biochemistry and Molecular Biology, 2019, 35(9): 960-967. | |
62 | Haeussler M. CRISPR off-targets: a question of context[J]. Cell Biology and Toxicology, 2020, 36(1): 5-9. |
63 | Safari F, Farajnia S, Ghasemi Y, et al. New developments in CRISPR technology: improvements in specificity and efficiency[J]. Current Pharmaceutical Biotechnology, 2017, 18(13): 1038-1054. |
64 | Giner G, Ikram S, Herold M J, et al. A systematic review of computational methods for designing efficient guides for CRISPR DNA base editor systems[J]. Briefings in Bioinformatics, 2023, 24(4): bbad205. |
65 | Hu Z W, Wang Y N, Liu Q, et al. Improving the precision of base editing by bubble hairpin single guide RNA[J]. mBio, 2021, 12(2): e00342-21. |
66 | Ye S H, Enghiad B, Zhao H M, et al. Fine-tuning the regulation of Cas9 expression levels for efficient CRISPR-Cas9 mediated recombination in Streptomyces [J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(4/5): 413-423. |
67 | Ran F A, Cong L, Yan W X, et al. In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546): 186-191. |
68 | Horvath P, Romero D A, Coûté-Monvoisin A C, et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus [J]. Journal of Bacteriology, 2008, 190(4): 1401-1412. |
69 | Yeo W L, Heng E, Tan L, et al. Biosynthetic engineering of the antifungal, anti-MRSA auroramycin[J]. Microbial Cell Factories, 2020, 19(1): 3. |
70 | Tan L, Heng E, Zulkarnain N, et al. CRISPR/Cas-mediated genome editing of streptomyces[J]. Methods in Molecular Biology, 2022, 2479: 207-225. |
71 | Yeo W L, Heng E, Tan L, et al. Characterization of Cas proteins for CRISPR-Cas editing in streptomycetes[J]. Biotechnology and Bioengineering, 2019, 116(9): 2330-2338. |
72 | Tan L, Heng E, Leong C Y, et al. Application of Cas12j for Streptomyces editing[J]. Biomolecules, 2024, 14(4): 486. |
73 | Hua H M, Xu J F, Huang X S, et al. Low-toxicity and high-efficiency Streptomyces genome editing tool based on the miniature type Ⅴ-F CRISPR/cas nuclease AsCas12f1[J]. Journal of Agricultural and Food Chemistry, 2024, 72(10): 5358-5367. |
74 | Ma J X, He W Y, Hua H M, et al. Development of a CRISPR/Cas9D10A nickase (nCas9)-mediated genome editing tool in Streptomyces [J]. ACS Synthetic Biology, 2023, 12(10): 3114-3123. |
75 | Wang S L, Zeng X Q, Jiang Y, et al. Unleashing the potential: type Ⅰ CRISPR-Cas systems in actinomycetes for genome editing[J]. Natural Product Reports, 2024, 41(9): 1441-1455. |
76 | Zhang J Q, Li X B, Deng Z X, et al. Comparative analysis of CRISPR loci found in streptomyces genome sequences[J]. Interdisciplinary Sciences, Computational Life Sciences, 2018, 10(4): 848-853. |
77 | Tong W Y, D X Y, Xu X, et al. Prokaryotic genome editing based on the subtype I-B-Svi CRISPR-Cas system[J/OL]. arXiv, 2023.. |
78 | Qiu Y, Wang S W, Chen Z, et al. An active type Ⅰ-E CRISPR-cas system identified in Streptomyces avermitilis [J]. PLoS One, 2016, 11(2): e0149533. |
79 | Bai C X, van Wezel G P. CUBIC: a versatile cumate-based inducible CRISPRi system in Streptomyces [J]. ACS Synthetic Biology, 2023, 12(10): 3143-3147. |
80 | Ji C H, Kim H, Kang H S. Synthetic inducible regulatory systems optimized for the modulation of secondary metabolite production in streptomyces[J]. ACS Synthetic Biology, 2019, 8(3): 577-586. |
81 | Wang X, Fu Y D, Wang M Y, et al. Synthetic cellobiose-inducible regulatory systems allow tight and dynamic controls of gene expression in Streptomyces [J]. ACS Synthetic Biology, 2021, 10(8): 1956-1965. |
82 | Je H W, Ji C H, Kim J Y, et al. CaExTun: mitigating Cas9-related toxicity in Streptomyces through species-specific expression tuning with randomized constitutive promoters[J]. ACS Synthetic Biology, 2023, 12(1): 61-70. |
83 | Wang K, Zhao Q W, Liu Y F, et al. Multi-layer controls of Cas9 activity coupled with ATP synthase over-expression for efficient genome editing in Streptomyces [J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 304. |
84 | Nihongaki Y, Kawano F, Nakajima T, et al. Photoactivatable CRISPR-Cas9 for optogenetic genome editing[J]. Nature Biotechnology, 2015, 33(7): 755-760. |
85 | Jiang Y H, Liu Y F, Wang K, et al. Fine-tuning Cas9 activity with a cognate inhibitor AcrIIA4 to improve genome editing in Streptomyces [J]. ACS Synthetic Biology, 2021, 10(11): 2833-2841. |
86 | Marino N D, Pinilla-Redondo R, Csörgő B, et al. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies[J]. Nature Methods, 2020, 17(5): 471-479. |
87 | Yue X, Xia T Y, Wang S, et al. Highly efficient genome editing in N. gerenzanensis using an inducible CRISPR/Cas9-RecA system[J]. Biotechnology Letters, 2020, 42(9): 1699-1706. |
88 | Yao C Z, Hu X Q, Wang X Y. Construction and application of a CRISPR/Cas9-assisted genomic editing system for Corynebacterium glutamicum [J]. AMB Express, 2021, 11(1): 70. |
89 | Najah S, Saulnier C, Pernodet J L, et al. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci[J]. BMC Biotechnology, 2019, 19(1): 18. |
90 | Pšeničnik A, Reberšek R, Slemc L, et al. Simple and reliable in situ CRISPR-Cas9 nuclease visualization tool is ensuring efficient editing in Streptomyces species[J]. Journal of Microbiological Methods, 2022, 200: 106545. |
91 | Wang Q S, Xie F, Tong Y J, et al. Dual-function chromogenic screening-based CRISPR/Cas9 genome editing system for actinomycetes[J]. Applied Microbiology and Biotechnology, 2020, 104(1): 225-239. |
92 | Csolleiova D, Knirschova R, Rezuchova B, et al. An efficient system for stable markerless integration of large biosynthetic gene clusters into Streptomyces chromosomes[J]. Applied Microbiology and Biotechnology, 2021, 105(5): 2123-2137. |
93 | 吴果果, 宋淑婷, 岳荣, 等. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用[J]. 中国生物工程杂志, 2019, 39(11): 78-86. |
Wu G G, Song S T, Yue R, et al. Application of counterseletable gene upp in genetic manipulation of Streptomyces fungicidicus [J]. China Biotechnology, 2019, 39(11): 78-86. | |
94 | Yang Y Y, Sun Q Q, Liu Y, et al. Development of a pyrF-based counterselectable system for targeted gene deletion in Streptomyces rimosus [J]. Journal of Zhejiang University. Science. B, 2021, 22(5): 383-396. |
95 | Palazzotto E, Tong Y J, Lee S Y, et al. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery[J]. Biotechnology Advances, 2019, 37(6): 107366. |
96 | Kormanec J, Rezuchova B, Homerova D, et al. Recent achievements in the generation of stable genome alterations/mutations in species of the genus Streptomyces [J]. Applied Microbiology and Biotechnology, 2019, 103(14): 5463-5482. |
97 | Vo P L H, Ronda C, Klompe S E, et al. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering[J]. Nature Biotechnology, 2021, 39(4): 480-489. |
98 | Mo J J, Wang S W, Zhang W, et al. Efficient editing DNA regions with high sequence identity in actinomycetal genomes by a CRISPR-Cas9 system[J]. Synthetic and Systems Biotechnology, 2019, 4(2): 86-91. |
99 | Massicard J M, Su L, Jacob C, et al. Engineering modular polyketide biosynthesis in streptomyces using CRISPR/cas: a practical guide[J]. Methods in Molecular Biology, 2022, 2489: 173-200. |
100 | Kudo K, Hashimoto T, Hashimoto J, et al. In vitro Cas9-assisted editing of modular polyketide synthase genes to produce desired natural product derivatives[J]. Nature Communications, 2020, 11(1): 4022. |
101 | Song C Y, Luan J, Li R J, et al. RedEx: a method for seamless DNA insertion and deletion in large multimodular polyketide synthase gene clusters[J]. Nucleic Acids Research, 2020, 48(22): e130. |
102 | Buntin K, Mrak P, Pivk Lukančič P, et al. Generation of bioactivity-tailored FK506/FK520 analogs by CRISPR editing in Streptomyces tsukubaensis [J]. Chemistry, 2024, 30(3): e202302350. |
103 | Todor H, Silvis M R, Osadnik H, et al. Bacterial CRISPR screens for gene function[J]. Current Opinion in Microbiology, 2021, 59: 102-109. |
104 | Heintze J, Luft C, Ketteler R. A CRISPR CASe for high-throughput silencing[J]. Frontiers in Genetics, 2013, 4: 193. |
[1] | Jing ZHANG, Yue YUAN, Yanmei LIU, Zhiwen WANG, Tao CHEN. Advance on the preparation of itaconic acid by biological method [J]. CIESC Journal, 2025, 76(3): 909-921. |
[2] | Yaqi HOU, Wei ZHANG, Hong ZHANG, Feiyu GAO, Jiahua HU. Optimization of LBM multiphase flow models based on machine learning and particle swarm algorithm [J]. CIESC Journal, 2025, 76(3): 1120-1132. |
[3] | Liwen ZHAO, Guilian LIU. Performance enhancement and parameter optimization of complex catalytic reaction system based on system integration [J]. CIESC Journal, 2025, 76(3): 1111-1119. |
[4] | Qin SUN, Guoqing ZHOU, Wanling ZHAI, Shan GAO, Qianqian LUO, Jian QU. Heat transfer characteristics of topology optimized channel flat-plate pulsating heat pipe under local multiple heat sources [J]. CIESC Journal, 2025, 76(3): 1006-1017. |
[5] | Ke LI, Biping XIN, Jian WEN. Sequential quadratic programming optimization of continuous variable density multi-layer insulation coupled with vapor cooled shield in liquid hydrogen storage tank [J]. CIESC Journal, 2025, 76(3): 985-994. |
[6] | Jinhao BAI, Xiaoping GUAN, Ning YANG. Analysis and optimization of flow characteristics in a filter-press water electrolyzer mastoid plate [J]. CIESC Journal, 2025, 76(2): 584-595. |
[7] | Nannan XIE, He CHEN, Guanghua YE, Zhongming SHU, Songbao FU, Xinggui ZHOU. Interaction of multiple impellers for gas-liquid stirred tank and optimization of their combinations [J]. CIESC Journal, 2025, 76(2): 564-575. |
[8] | Gonghan GUO, Huidian DING, Qiang LI, Shengkun JIA, Xing QIAN, Yang YUAN, Haisheng CHEN, Yiqing LUO. Dynamic Bayesian optimization method for batch distillation operation process [J]. CIESC Journal, 2025, 76(2): 755-768. |
[9] | Chao REN, Kai WANG, Jie HAN, Chunhua YANG. Event-time triggered slow time-varying industrial process dynamic scheduling method [J]. CIESC Journal, 2025, 76(1): 256-265. |
[10] | Haidong LI, Qiqi ZHANG, Lu YANG, Naeem AKRAM, Chenglin CHANG, Wenlong MO, Weifeng SHEN. Detailed design of shell-and-tube heat exchanger using intelligent evolutionary algorithms [J]. CIESC Journal, 2025, 76(1): 241-255. |
[11] | Junjie ZHANG, Yuan CHEN, Yuntang LI, Xiaolu LI, Bingqing WANG, Xudong PENG. Analysis and optimization of dynamic performance of super-elliptical hole floating seal dam compliant foil face gas seal [J]. CIESC Journal, 2025, 76(1): 296-310. |
[12] | Liming PU, Gui WANG, Chunlai ZHENG, Ke WANG, Tenglong XIANG, Zhihong WANG. Optimization and analysis of natural gas liquefaction process in mixed fluid cascade [J]. CIESC Journal, 2024, 75(S1): 267-275. |
[13] | Junfeng WANG, Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG. Liquid-phase discharge plasma decomposition of methanol for hydrogen production: optimization of electrode configuration [J]. CIESC Journal, 2024, 75(9): 3277-3286. |
[14] | Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle [J]. CIESC Journal, 2024, 75(6): 2143-2156. |
[15] | Rufeng XU, Yucheng CHEN, Dan GAO, Jingyu JIAO, Dong GAO, Haibin WANG, Shanjing YAO, Dongqiang LIN. Model-assisted process optimization of ion-exchange chromatography for monoclonal antibody charge variant separation [J]. CIESC Journal, 2024, 75(5): 1903-1911. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 580
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 281
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||