CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6644-6657.DOI: 10.11949/0438-1157.20250655
• Energy and environmental engineering • Previous Articles Next Articles
Xiaofei ZHEN1,2(
), Leiyu HUANG1,2, Yiming SUN1,2, Jia LIU1,2, Wenjiong CAO1,2, Yan HAN3, Ti DONG1,2(
)
Received:2025-06-18
Revised:2025-08-13
Online:2026-01-23
Published:2025-12-31
Contact:
Ti DONG
甄箫斐1,2(
), 黄雷雨1,2, 孙一铭1,2, 刘佳1,2, 曹文炅1,2, 韩燕3, 董缇1,2(
)
通讯作者:
董缇
作者简介:甄箫斐(1987—),男,博士,教授,zxf283386515@163.com
基金资助:CLC Number:
Xiaofei ZHEN, Leiyu HUANG, Yiming SUN, Jia LIU, Wenjiong CAO, Yan HAN, Ti DONG. Study on evolution of key internal and external parameters of lithium-ion power battery under different heat transfer conditions[J]. CIESC Journal, 2025, 76(12): 6644-6657.
甄箫斐, 黄雷雨, 孙一铭, 刘佳, 曹文炅, 韩燕, 董缇. 差异换热条件下锂离子动力电池内外部关键参数演化研究[J]. 化工学报, 2025, 76(12): 6644-6657.
Add to citation manager EndNote|Ris|BibTeX
| 方程名称 | 控制方程 | 边界条件 |
|---|---|---|
| 固相电荷守恒 | ||
| 液相电荷守恒 | ||
| 固相质量守恒 | ||
| 液相质量守恒 | ||
| 电极动力学 |
Table 1 Electrochemical control equations and energy equations
| 方程名称 | 控制方程 | 边界条件 |
|---|---|---|
| 固相电荷守恒 | ||
| 液相电荷守恒 | ||
| 固相质量守恒 | ||
| 液相质量守恒 | ||
| 电极动力学 |
| 方程名称 | 控制方程 | 初始条件与边界条件 |
|---|---|---|
| 能量守衡方程 | ||
| 反应热 | ||
| 极化热 | ||
| 欧姆热 |
Table 2 Control equations of thermal model
| 方程名称 | 控制方程 | 初始条件与边界条件 |
|---|---|---|
| 能量守衡方程 | ||
| 反应热 | ||
| 极化热 | ||
| 欧姆热 |
| 参数 | 负集流体 | 负极 | 隔膜 | 正极 | 正集流体 |
|---|---|---|---|---|---|
| 厚度δ/μm | 10③ | 46③ | 20③ | 59③ | 19③ |
| 密度ρ/(kg·m-3) | 900① | 1437.4① | 1978① | 1260.2① | 385① |
| 颗粒半径r/μm | — | 7.5① | — | 0.6① | — |
| 固相体积分数εs | — | 0.45④ | — | 0.47④ | — |
| 孔隙率εl | — | 0.525④ | 0.54④ | 0.354④ | — |
| 最大锂离子浓度cs,max/(mol·m-3) | — | 31370① | — | 22806① | — |
| 初始SOC | — | 0.8④ | — | 0.13④ | — |
| 初始电解质浓度cl,0/(mol·m-3) | — | — | 1200① | — | — |
| 固相电导率σs/(S·m-1) | — | 100① | — | 0.5① | — |
| Bruggeman因子p | — | 1.5① | 1.5① | 1.5① | — |
| 负/正极转移系数αa, αc | — | 0.5① | — | 0.5① | — |
| 比热容cp /(J·kg-1·K-1) | 385① | 1437.4① | 1978① | 1260.2① | 900① |
| 热导率λ/(W·m-1·K-1) | 400① | 1.04① | 0.334① | 1.48① | 238① |
| 自然对流传热系数h/(W·m-2·K-1) | — | — | 5② | — | — |
| 参考温度Tref /K | 298.15① | 298.15① | 298.15① | 298.15① | 298.15① |
Table 3 Static parameters for simulation
| 参数 | 负集流体 | 负极 | 隔膜 | 正极 | 正集流体 |
|---|---|---|---|---|---|
| 厚度δ/μm | 10③ | 46③ | 20③ | 59③ | 19③ |
| 密度ρ/(kg·m-3) | 900① | 1437.4① | 1978① | 1260.2① | 385① |
| 颗粒半径r/μm | — | 7.5① | — | 0.6① | — |
| 固相体积分数εs | — | 0.45④ | — | 0.47④ | — |
| 孔隙率εl | — | 0.525④ | 0.54④ | 0.354④ | — |
| 最大锂离子浓度cs,max/(mol·m-3) | — | 31370① | — | 22806① | — |
| 初始SOC | — | 0.8④ | — | 0.13④ | — |
| 初始电解质浓度cl,0/(mol·m-3) | — | — | 1200① | — | — |
| 固相电导率σs/(S·m-1) | — | 100① | — | 0.5① | — |
| Bruggeman因子p | — | 1.5① | 1.5① | 1.5① | — |
| 负/正极转移系数αa, αc | — | 0.5① | — | 0.5① | — |
| 比热容cp /(J·kg-1·K-1) | 385① | 1437.4① | 1978① | 1260.2① | 900① |
| 热导率λ/(W·m-1·K-1) | 400① | 1.04① | 0.334① | 1.48① | 238① |
| 自然对流传热系数h/(W·m-2·K-1) | — | — | 5② | — | — |
| 参考温度Tref /K | 298.15① | 298.15① | 298.15① | 298.15① | 298.15① |
| 描述 | 参数 | 正极表达式 | 负极表达式 |
|---|---|---|---|
| 固相扩散系数 | Ds | ||
| 反应速率常数 | ki | ||
| 平衡电势 | Uref | ||
| 熵热系数 | |||
| 集流体电导率 | σcc | ||
| 液相电导率 | κ(cl,T) | ||
| 液相扩散系数 | Dl (cl,T) | ||
传递 系数 | |||
Table 4 Material dynamic parameters
| 描述 | 参数 | 正极表达式 | 负极表达式 |
|---|---|---|---|
| 固相扩散系数 | Ds | ||
| 反应速率常数 | ki | ||
| 平衡电势 | Uref | ||
| 熵热系数 | |||
| 集流体电导率 | σcc | ||
| 液相电导率 | κ(cl,T) | ||
| 液相扩散系数 | Dl (cl,T) | ||
传递 系数 | |||
| 参数 | 数值 |
|---|---|
| 标称容量/Ah | 20 |
| 标称电压/V | 3.3 |
| 充电截止电压/V | 3.6 |
| 放电截止电压/V | 2.0 |
| 外形尺寸/(mm×mm×mm) | 227×160×7.5 |
| 质量/g | 496 |
Table 5 Basic parameters of LiFePO4 battery
| 参数 | 数值 |
|---|---|
| 标称容量/Ah | 20 |
| 标称电压/V | 3.3 |
| 充电截止电压/V | 3.6 |
| 放电截止电压/V | 2.0 |
| 外形尺寸/(mm×mm×mm) | 227×160×7.5 |
| 质量/g | 496 |
Fig.8 Two-dimensional temperature distribution at the middle cross-section in the y-direction at the end of discharge: (a)—(c) Case3 condition; (d)—(f) Case4 condition; (g)—(i) Case5 condition
Fig.9 Solid-phase lithium concentration distribution at the end of discharge: (a)—(c) Case 6 condition; (d)—(f) Case 7 condition; (g)—(i) Case 8 condition (initial values for anode and cathode: 2971.8 and 25096 mol·m-³, respectively)
| [1] | 陈国贺, 吕培召, 李孟涵, 等. 锂离子电池热失控传播特性及其抑制策略研究进展[J]. 储能科学与技术, 2024, 13(7): 2470-2482. |
| Chen G H, Lyu P Z, Li M H, et al. Research progress on thermal runaway propagation characteristics and suppression strategies of lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. | |
| [2] | 李晋, 王青松, 孔得朋, 等. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. |
| Li J, Wang Q S, Kong D P, et al. Research progress on safety evaluation of lithium-ion battery energy storage[J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. | |
| [3] | Ren D S, Liu X, Feng X N, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228: 633-644. |
| [4] | Liao Z W, Lv D Z, Hu Q Y, et al. Review on aging risk assessment and life prediction technology of lithium energy storage batteries[J]. Energies, 2024, 17(15): 3668. |
| [5] | Dong T, Huang L Y, Liu J, et al. Advances and challenges in obtaining internal temperature for lithium-ion batteries[J]. Journal of Power Sources, 2025, 651: 237571. |
| [6] | Hollinger A S, McAnallen D R, Brockett M T, et al. Cylindrical lithium-ion structural batteries for drones[J]. International Journal of Energy Research, 2020, 44(1): 560-566. |
| [7] | Chen Z F, Jia L, Yin L F, et al. A review on thermal management of Li-ion battery: from small-scale battery module to large-scale electrochemical energy storage power station[J]. Journal of Thermal Science, 2025, 34(1): 1-23. |
| [8] | Wu X G, Du J Y, Guo H Q, et al. Boundary conditions for onboard thermal-management system of a battery pack under ultrafast charging[J]. Energy, 2022, 243: 123075. |
| [9] | Wang J L, Zhang Y M. Research on cooling characteristics of power battery fast-charging of refrigerant-based direct cooling system[J]. IOP Conference Series: Earth and Environmental Science, 2021, 696(1): 012007. |
| [10] | Zhang Y, Mei W X, Qin P, et al. Numerical modeling on thermal runaway triggered by local overheating for lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116928. |
| [11] | Zhou Z Z, Li M Y, Zhou X D, et al. Investigating thermal runaway triggering mechanism of the prismatic lithium iron phosphate battery under thermal abuse[J]. Renewable Energy, 2024, 220: 119674. |
| [12] | Hu X S, Zheng Y S, Howey D A, et al. Battery warm-up methodologies at subzero temperatures for automotive applications: recent advances and perspectives[J]. Progress in Energy and Combustion Science, 2020, 77: 100806. |
| [13] | He C X, Yue Q L, Wan S B, et al. Experimental and numerical investigations of liquid cooling plates for pouch lithium-ion batteries considering non-uniform heat generation[J]. Applied Thermal Engineering, 2025, 258: 124777. |
| [14] | Wu W X, Wu W, Qiu X H, et al. Low-temperature reversible capacity loss and aging mechanism in lithium-ion batteries for different discharge profiles[J]. International Journal of Energy Research, 2019, 43(1): 243-253. |
| [15] | 黄瑞, 汪铭磊, 吴启超, 等. 不同换热环境对电池性能影响的试验研究[J]. 实验室研究与探索, 2022, 41(11): 45-48, 52. |
| Huang R, Wang M L, Wu Q C, et al. Experimental study on the influence of different heat transfer environments on battery performance[J]. Research and Exploration in Laboratory, 2022, 41(11): 45-48, 52. | |
| [16] | 宋缙华, 丰震河, 郭向飞, 等. 基于多尺度的空间锂离子蓄电池单体电-热耦合模型[J]. 上海航天, 2021, 38(5): 17-24. |
| Song J H, Feng Z H, Guo X F, et al. Multi-scale electro-thermal coupled model of space lithium-ion battery cell[J]. Shanghai Aerospace, 2021, 38(5): 17-24. | |
| [17] | Mei W X, Duan Q L, Zhao C P, et al. Three-dimensional layered electrochemical-thermal model for a lithium-ion pouch cell(part Ⅱ): The effect of units number on the performance under adiabatic condition during the discharge[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119082. |
| [18] | 张赛, 汪振毅, 胡世旺. 基于电化学-热-力耦合模型的锂离子电池热失控研究[J]. 安全与环境学报, 2024, 24(2): 551-559. |
| Zhang S, Wang Z Y, Hu S W. Study on thermal runaway of lithium-ion batteries based on electrochemical-thermal-mechanical coupled model[J]. Journal of Safety and Environment, 2024, 24(2): 551-559. | |
| [19] | Jiang G W, Zhuang L, Hu Q H, et al. An investigation of heat transfer and capacity fade in a prismatic Li-ion battery based on an electrochemical-thermal coupling model[J]. Applied Thermal Engineering, 2020, 171: 115080. |
| [20] | 孙祺明. 基于电化学-热耦合模型的大容量磷酸铁锂电池热特性分析[D]. 武汉: 武汉理工大学, 2021. |
| Sun Q M. Thermal characteristic analysis of large-capacity lithium iron phosphate batteries based on an electrochemical-thermal coupled model[D]. Wuhan: Wuhan University of Technology, 2021. | |
| [21] | Wu X K, Song K F, Zhang X Y, et al. Safety issues in lithium ion batteries: materials and cell design[J]. Frontiers in Energy Research, 2019, 7: 65. |
| [22] | Sung C, Kim H, Kim C S, et al. Improvement of thermal stability of lithium ion pouch type cell[J]. ECS Meeting Abstracts, 2018, MA2018-01(3): 366. |
| [23] | Fuller T F, Doyle M, Newman J. Simulation and optimization of the dual lithium ion insertion cell[J]. Journal of the Electrochemical Society, 1994, 141(1): 1-10. |
| [24] | Doyle M, Newman J. Modeling the performance of rechargeable lithium-based cells: design correlations for limiting cases[J]. Journal of Power Sources, 1995, 54(1): 46-51. |
| [25] | Doyle M, Fuller T F, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. |
| [26] | Azuaje-Berbecí B J, Ertan H B. A model for the prediction of thermal runaway in lithium-ion batteries[J]. Journal of Energy Storage, 2024, 90: 111831. |
| [27] | 陈昊鹏. 锂电池热电耦合特性分析与热行为仿真研究[D]. 长春: 吉林大学, 2023. |
| Chen H P. Analysis of thermoelectric coupling characteristics and thermal behavior simulation of lithium batteries[D]. Changchun: Jilin University, 2023. | |
| [28] | Mi J P, Liu X L, Zhu D M, et al. The exploration of the internal homogeneities for a LiFePO4 pouch lithium-ion battery with a 3D electrochemical-thermal coupled model[J]. Next Energy, 2024, 4: 100127. |
| [29] | 韦雪晴. 动力锂离子电池模组的热特性建模与支撑结构优化设计[D]. 长沙: 中南大学, 2023. |
| Wei X Q. Thermal characteristic modeling and support structure optimization design of power lithium-ion battery modules[D]. Changsha: Central South University, 2023. | |
| [30] | Panchal S, Dincer I, Agelin-Chaab M, et al. Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery[J]. International Journal of Heat and Mass Transfer, 2017, 109: 1239-1251. |
| [31] | Qian G N, Zan G B, Li J Z, et al. In-device battery failure analysis[J]. Advanced Materials, 2025, 37(10): 2416915. |
| [32] | 孟德超, 马紫峰, 李林森. 锂离子电池介尺度电化学反应非均匀性[J]. 化工进展, 2021, 40(9): 4869-4881. |
| Meng D C, Ma Z F, Li L S. Non-uniformity of mesoscale electrochemical reactions in lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4869-4881. |
| [1] | Lixiao WU, Xixi YAN, Suna ZHANG, Yiming XU, Jiaying QIAN, Yongmin QIAO, Lijun WANG. The preparation of phosphorus-doped microcrystalline graphite and its electrochemical performance as an anode material for lithium-ion batteries [J]. CIESC Journal, 2025, 76(7): 3615-3625. |
| [2] | Xinye YUAN, Xianbo XING, Denghua LIU, Weitao DING, Borui FAN, Hua ZHONG, Kai HAN. Effect of silicon crystallinity on electrochemical performance for chemical vapor deposited silicon-carbon composites [J]. CIESC Journal, 2025, 76(12): 6708-6717. |
| [3] | Shibiao XU, Zhengbing WEI, Mengfan BAO, Yi CHENG, Yanggang JIA, Na LIN, Aiqin MAO. Cu cation vacancies enhance the lithium storage performance of perovskite-type high-entropy oxides [J]. CIESC Journal, 2025, 76(12): 6718-6728. |
| [4] | Dewei WU, Zhengpeng WANG, Yue ZHOU, Xiaoning LI, Zhao CHEN, Zhuo LI, Chengwei LIU, Xuegang LI, Wende XIAO. Preparation of silicon carbon anode for lithium-ion batteries by fixed bed and lithium storage properties [J]. CIESC Journal, 2024, 75(S1): 300-308. |
| [5] | Bangjin LIU, Linwei WANG, Yueyue WU, Yongchao LIU, Guobin ZHONG, Hongfa XIANG. Advances in thermal management of lithium-ion batteries [J]. CIESC Journal, 2024, 75(12): 4413-4431. |
| [6] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
| [7] | Zhongliang XIAO, Bilu YIN, Liubin SONG, Yinjie KUANG, Tingting ZHAO, Cheng LIU, Rongyao YUAN. Research progress of waste lithium-ion battery recycling process and its safety risk analysis [J]. CIESC Journal, 2023, 74(4): 1446-1456. |
| [8] | Zhongliang XIAO, Youtao XIANG, Liubin SONG, Yinjie KUANG, Tingting ZHAO, Yubo XIA, Minzhi XIAO, Lin JIANG, Taotao CHEN, Qian XIAO. Progress of mechanochemical recovery of valuable metals from used lithium-ion battery cathode materials [J]. CIESC Journal, 2023, 74(11): 4419-4432. |
| [9] | Pengpeng WANG, Yanggang JIA, Xia SHAO, Jie CHENG, Aiqin MAO, Jie TAN, Daolai FANG. Preparation and lithium storage performance of K+-doped spinel (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 high-entropy oxide anode materials [J]. CIESC Journal, 2022, 73(12): 5625-5637. |
| [10] | Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Progress and prospect of recycling spent lithium battery cathode materials by hydrometallurgy [J]. CIESC Journal, 2022, 73(1): 85-96. |
| [11] | Jie WANG, Yuan LI, Hailei ZHAO. Synthesis and lithium storage performance of three-dimensional Co3O4 micro-flowers assembled with nanoparticles [J]. CIESC Journal, 2020, 71(4): 1844-1850. |
| [12] | Liubin SONG, Anxian LI, Zhongliang XIAO, Zhenzhen CHI, Zhong CAO. Application research status of first-principles in lithium-ion battery electrode materials [J]. CIESC Journal, 2019, 70(6): 2051-2059. |
| [13] | WANG Jian, GUO Hang, YE Fang, MA Chongfang. Numerical simulation of effect of phase change material on temperature distribution in power battery pack of vehicle [J]. CIESC Journal, 2018, 69(4): 1611-1619. |
| [14] | GAO Xiang, GUO Yuan, WEI Difeng, LUO Yingwu, SU Rongxin. Recent progress on binders for silicon-based anodes in lithium-ion batteries [J]. CIESC Journal, 2018, 69(11): 4605-4613. |
| [15] | HE Lipo, SUN Shuying, YU Jianguo. Review on processes and technologies for recovery of valuable metals from spent lithium-ion batteries [J]. CIESC Journal, 2018, 69(1): 327-340. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||