CIESC Journal ›› 2016, Vol. 67 ›› Issue (5): 1665-1672.DOI: 10.11949/j.issn.0438-1157.20150930
Previous Articles Next Articles
YAO Guice1, YUAN Kunpeng1, WU Shuo2, WANG Zhaoliang1
Received:
2015-06-15
Revised:
2016-02-28
Online:
2016-05-05
Published:
2016-05-05
Supported by:
supported by the National Natural Science Foundation of China (U1262112).
姚贵策1, 苑昆鹏1, 吴硕2, 王照亮1
通讯作者:
王照亮
基金资助:
国家自然科学基金项目(U1262112)。
CLC Number:
YAO Guice, YUAN Kunpeng, WU Shuo, WANG Zhaoliang. Characterizing of thermal conductivity and thermal diffusivity of methane hydrate by free-standing sensor 3ω method[J]. CIESC Journal, 2016, 67(5): 1665-1672.
姚贵策, 苑昆鹏, 吴硕, 王照亮. 独立探头3ω法表征甲烷水合物热导率和热扩散率[J]. 化工学报, 2016, 67(5): 1665-1672.
[1] | Sloan E D. Fundamental principles and applications of natural gas hydrates [J]. Nature, 2003, 426(6964): 353-363. DOI: 10.1038/nature02135. |
[2] | Booth J S, Winters W J, Dillon W P. Apparatus investigates geological aspects of gas hydrates [J]. Oil & Gas Journal, 1999, 97(40): 63-63. |
[3] | Winters W J, Pecher I A, Booth J S. Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) [J]. Bulletin-Geological Survey of Canada, 1999: 241-250. |
[4] | Winters W J, Pecher I A, Waite W F. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate [J]. American Mineralogist, 2004, 89(8/9): 1221-1227.DOI: 10.2138/am-2004-8-909. |
[5] | 宁伏龙, 蒋国胜, 张凌, 等. 天然气水合物实验装置及其发展趋势 [J]. 海洋石油, 2008, 28(2): 68-72. DOI: 10.3969/j.issn.1008-2336. 2008.02.012. Ning F l, Jiang G s, Zhang L, et al. Development of experimental equipments for gas hydrate research [J]. Offshore Oil, 2008, 28(2): 68-72. DOI: 10.3969/j.issn.1008-2336.2008.02.012. |
[6] | Huang D z, Fan S s. Thermal conductivity of methane hydrate formed from sodium dodecyl sulfate solution [J]. Journal of Chemical & Engineering Data, 2004, 49(5): 1479-1482. DOI: 10.1021/je0498098. |
[7] | Stoll R D, Bryan G M. Physical properties of sediments containing gas hydrates [J]. Journal of Geophysical Research: Solid Earth (1978—2012), 1979, 84(B4): 1629-1634. DOI: 10.1029/JB084iB04p01629. |
[8] | Cook J G, Leaist D G. An exploratory study of the thermal conductivity of methane hydrate [J]. Geophysical Research Letters, 1983, 10(5): 397-399. DOI: 10.1029/GL010i005p00397 |
[9] | Ashworth T, Johnson L R, LAI L P. Thermal conductivity of pure ice and tetrahydrofuran clathrate hydrates [J]. High Temperatures. High Pressures, 1985, 17(4): 413-419. |
[10] | Tse J S, White M A. Origin of glassy crystalline behavior in the thermal properties of clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate [J]. The Journal of Physical Chemistry, 1988, 92(17): 5006-5011. DOI: 10.1021/j100328a036. |
[11] | Andersson O, Suga H. Thermal conductivity of normal and deuterated tetrahydrofuran clathrate hydrates [J]. Journal of Physics and Chemistry of Solids, 1996, 57(1): 125-132. DOI: 10.1016/0022-3697(95)00157-3 |
[12] | Waite W F, Gilbert L Y, Winters W J. Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data [J]. Review of Scientific Instruments, 2006, 77(4): 044904. DOI: 10.1063/1.2194481. |
[13] | Waite W F, Stern L A, Kirby S H. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate [J]. Geophysical Journal International, 2007, 169(2): 767-774. DOI: 10.1111/j.1365-246X.2007.03382.x. |
[14] | Rosenbaum E J, English N J, Johnson J K. Thermal conductivity of methane hydrate from experiment and molecular simulation [J]. The Journal of Physical Chemistry B, 2007, 111(46): 13194-13205. DOI: 10.1021/jp074419o |
[15] | 黄犊子, 樊栓狮, 梁德青, 等. 水合物合成及导热系数测量 [J]. 地球物理学报, 2005, 48(5): 1125-1131. DOI: 10.3321/j.issn: 0001-5733. 2005.05.021. Huang D z, Fan S s, Liang D q. Measurement of gas hydrate composition and its thermal conductivity [J]. Chinese Journal of Geophysics, 2005, 48(5): 1125-1131. DOI: 10.3321/j.issn:0001-5733. 2005.05.021. |
[16] | Yamamoto Y, Kawamura T, Ohtake M. Measurement of thermal conductivity of artificial hydrate sediment sample[C]//Proceedings of the 14th International Offshore and Polar Engineering Conference, 2004: 36-40. |
[17] | 张平, 宣益民, 李强. 界面接触热阻的研究进展 [J]. 化工学报, 2012, 63(2): 335-349. DOI: 10.3969/j.issn.0438-1157.2012.02.001. ZHANG P, XUAN Y M, LI Q, Development on thermal contact resistance [J]. CIESC Journal, 2012, 63(2): 335-349. DOI: 10.3969/j.issn.0438-1157.2012.02.001. |
[18] | 唐大伟, 王照亮. 微纳米材料和结构热物理特性表征[M]. 北京: 科学出版社, 2010: 345. TANG D W, WANG Z L. Characterization of Thermophysical Characteristics of Micro and Nano Materials[M]. Beijing: Science Press, 2010: 345. |
[19] | CAHILL D G, POHL R O. Thermal conductivity of amorphous solids above the plateau [J]. Physical Review B, 1987, 35(8): 4067. DOI: 10.1103/PhysRevB.35.4067. |
[20] | CAHILL D G. Thermal conductivity measurement from 30 to 750 K: the 3ω method [J]. Review of Scientific Instruments, 1990, 61(2): 802-808. DOI: 10.1063/1.1141498. |
[21] | CAHILL D G, KATIYAR M, ABELSON J R. Thermal conductivity of a-Si: H thin films [J]. Physical Review B, 1994, 50(9): 6077. DOI: 10.1103/PhysRevB.50.6077. |
[22] | 王照亮, 唐大伟, 郑兴华. 利用3ω法同时测量纳米流体热导率和热扩散率 [J]. 化工学报, 2007, 58(10): 2462-2468. DOI: 10.3321/j.issn:0438-1157.2007.10.008. WANG Z L, TANG D W, ZHENG X H. Simultaneous measurements of thermal conductivity and thermal diffusivity of nanofluids using 3ω method [J]. Journal of Chemical Industry and Engineering (China), 2007, 58(10): 2462-2468. DOI: 10.3321/j.issn:0438-1157. 2007.10.008. |
[23] | CHOI S R, HONG J, KIM D. A micromachined AC thermal sensor for monitoring the liquid-gas interface in a microchannel [J]. Sensors and Actuators A: Physical, 2009, 150: 40-45. DOI: 10.1016/j.sna. 2008.11.034. |
[24] | POON T W, LEU J, KASTHURIRANGAN J. Adhesion and fracture analysis of metal/polyimide fine line structures [J]. Journal of Applied Physics, 1994, 76(9): 5515-5523. DOI: 10.1063/1.357152. |
[25] | 邱琳. 基于独立型传感器3ω法的微纳米材料热输运研究[D]. 北京: 中国科学院工程热物理研究所, 2012. QIU L. The freestanding sensor-based 3ω method for studying of thermal transportation mechanisms of micro and nano-scale materials[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2012. |
[26] | OLSON B W, GRAHAM S, CHEN K. A practical extension of the 3ω method to multilayer structures [J]. Review of Scientific Instruments, 2005, 76(5): 053901. DOI: 10.1063/1.1896619 |
[27] | TONG T, MAJUMDAR A. Reexamining the 3-omega technique for thin film thermal characterization [J]. Review of Scientific Instruments, 2006, 77(10): 104902. DOI: 10.1063/1.2349601. |
[28] | QIU L, TANG D W, ZHENG X H, et al. The freestanding sensor-based 3ω technique for measuring thermal conductivity of solids: principle and examination [J]. Review of Scientific Instruments, 2011, 82(4): 045106. DOI: 10.1063/1.3579495. |
[29] | BORCA-TASCIUC T, KUMAR A R, CHEN G. Data reduction in 3ω method for thin-film thermal conductivity determination [J]. Review of Scientific Instruments, 2001, 72(4): 2139-2147. DOI: 10.1063/1. 1353189. |
[30] | 唐建峰. 水合物法气体分离应用技术研究[D].北京: 中国石油大学, 2011. TANG J F. Application technology research on hydrate-based gases separation[D]. Beijing: China University of Petroleum, 2011. |
[31] | DEMARTIN B J. Laboratory measurements of the thermal conductivity and thermal diffusivity of methane hydrate at simulated in situ conditions[D]. Atlanta: Georgia Institute of Technology, 2001. |
[32] | KUMAR P, TURNER D, SLOAN E D. Thermal diffusivity measurements of porous methane hydrate and hydrate‐sediment mixtures [J]. Journal of Geophysical Research: Solid Earth (1978—2012), 2004, 109(B1): B01207. DOI: 10.1029/2003JB002763. |
[1] | Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981. |
[2] | Xingda SHI, Huayan CHEN, Yanan GE, Chunrui WU, Hongyou JIA, Xiaolong LYU. Construction of three-dimensional network by modified MWCNT and AlN fillings in PVDF to improve the thermal conductivity [J]. CIESC Journal, 2022, 73(5): 2262-2269. |
[3] | Huan XU, Lyu KE, Shenghui ZHANG, Zilin ZHANG, Guangdong HAN, Jinsheng CUI, Daoyuan TANG, Donghui HUANG, Jiefeng GAO, Xinjian HE. Upgrading dispersion and interfacial morphologies for thermally conductive polypropylene composites by in situ growth of carbon nanotubes at graphene oxide [J]. CIESC Journal, 2022, 73(11): 5150-5157. |
[4] | Huihui HU, Liang YANG, Daoping LIU, Ke ZHANG. Kinetics of methane hydrate formation in droplets of low-dose superabsorbent resin solution [J]. CIESC Journal, 2022, 73(10): 4659-4667. |
[5] | LIANG Heng, LIU Yicai, WANG Qianxu, ZHAO Xiangle, LI Zheng. Research progress of effective thermal conductivity of open-cell foam metal composites [J]. CIESC Journal, 2021, 72(S1): 7-20. |
[6] | YANG Zhen, YAO Yuanpeng, WU Huiying. Analysis on thermal conduction characteristics of metal foam based on conduction form factor [J]. CIESC Journal, 2021, 72(3): 1295-1301. |
[7] | Junhua PEI, Liang YANG, Xin WANG, Han HU, Daoping LIU. Experimental study on kinetics of methane hydrate formation enhanced by copper foam [J]. CIESC Journal, 2021, 72(11): 5751-5760. |
[8] | Dongmin TIAN, Yanpeng WU, Fengjun CHEN. Analysis of heat transfer performance of copper-water heat pipe based on nano enhanced-PCM [J]. CIESC Journal, 2020, 71(S1): 220-226. |
[9] | Yan SHI, Junwen ZHAO, Yanping YUAN, Guangze DAI, Jing HAN. Effect of Cu content on phase change thermal storage properties of Al-Cu-Si alloy [J]. CIESC Journal, 2020, 71(5): 2017-2023. |
[10] | Zepei YU, Yanhui FENG, Daili FENG, Xinxin ZHANG. Thermal conductivity of three dimensional graphene-carbon nanotubes hybrid structure: molecular dynamics simulation [J]. CIESC Journal, 2020, 71(4): 1822-1827. |
[11] | Ming LIU, Zhe XU. Phonon heat conduction and quantum correction of methane hydrate [J]. CIESC Journal, 2020, 71(4): 1424-1431. |
[12] | Yixin MA, Yu JIN, Hu ZHANG, Xian WANG, Guihua TANG. Experimental study on heat transfer performance of finned gravity heat pipe [J]. CIESC Journal, 2020, 71(2): 594-601. |
[13] | Wanqiang LIU,Fan YANG,Hua YUAN,Yuanda ZHANG,Pinggui YI,Hu ZHOU. Molecular dynamics simulation and mechanism study on thermal conductivity of alcohols [J]. CIESC Journal, 2020, 71(11): 5159-5168. |
[14] | Dexin HOU,Yue CHEN,Shuliang YE. Measurement of in-plane thermal conductivity of glued graphite film based on thermal imaging [J]. CIESC Journal, 2019, 70(S2): 76-84. |
[15] | Fan YU,Xinxin ZHANG. Analysis and experiments of measuring thermal conductivity and diffusivity of materials by plane source-pulse transient method [J]. CIESC Journal, 2019, 70(S2): 70-75. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 567
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 439
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||