[1] |
NUMATA K, SAKAKI C, YAMANAKA S. Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode materials of secondary lithium batteries[J]. Chem. Lett., 1997, 8: 725-726.
|
[2] |
WANG Z, LI B, MA J, et al. The enhanced electrochemical performance of nanocrystalline Li[Li0.26Ni0.11Mn0.63]O2 synthesized by the molten-salt method for Li-ion batteries[J]. Electrochim. Acta, 2014, 117: 285-291.
|
[3] |
SON M Y, LEE J K, KANG Y C. Fabrication and electrochemical performance of 0.6Li2MnO3-0.4Li(Ni1/3Co1/3Mn1/3)O2 microspheres by two-step spray-drying process[J]. Sci. Rep., 2014, 4:5752.
|
[4] |
CHEN J J, LI Z D, XIANG H F, et al. Enhanced electrochemical performance and thermal stability of a CePO4-coated Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries[J]. RSC Adv., 2015, 5: 3031-3038.
|
[5] |
WANG J, HE X, KLOEPSCH R, et al. Increased capacity of LiNi1/3Co1/3Mn1/3O2- Li[Li1/3Mn2/3]O2 cathodes by MnOx-surface modification for lithium-ion batteries[J]. Energy Technology, 2014, 2: 188-193.
|
[6] |
CONG L N, GAO X G, MA S C, et al. Enhancement of electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with Li4Ti5O12[J]. Electrochim. Acta, 2014, 115: 399-406.
|
[7] |
MIAO X, NI H, ZHANG H, et al. Li2ZrO3-coated 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery[J]. J. Power Sources, 2014, 264: 147-154.
|
[8] |
QIAO Q Q, ZHANG H Z, LI G R, et al. Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li-Mn-PO4 as the cathode for lithium-ion batteries[J]. J. Mater. Chem. A, 2013, 1: 5262-5268.
|
[9] |
KNIGHT J C, NANDAKUMAR P, KAN W H, et al. Effect of Ru substitution on the first charge-discharge cycle of lithium-rich layered oxides[J]. J. Mater. Chem. A, 2015, 3: 2006-2011.
|
[10] |
CROY J R, GALLAGHER K G, BALASUBRAMANIAN M, et al. Examining hysteresis in composite xLi2MnO3·(1-x)LiMO2 cathode structures[J]. J. Phys. Chem. C, 2013, 117: 6525-6536.
|
[11] |
SHOJAN J, CHITTURI V R, SOLER J, et al. High energy xLi2MnO3-(1-x)LiNi2/3Co1/6Mn1/6O2 composite cathode for advanced Li-ion batteries[J]. J. Power Sources, 2015, 274: 440-450.
|
[12] |
AMALRAJ F, TALIANKER M, MARKOVSKY B, et al. Study of the lithium-rich integrated compound xLi2MnO3·(1-x)LiMO2 (x around 0.5; M = Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells[J]. J. Electrochem. Soc., 2013, 160(2): A324-A337.
|
[13] |
ZHANG H Z, QIAO Q Q, LI G R, et al. Surface nitridation of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as cathode material for lithium-ion battery[J]. J. Mater. Chem., 2012, 22: 13104-13109.
|
[14] |
ZHANG L, TAKADA K, OHTA N, et al. Layered (1-x-y)LiNi1/2Mn1/2O2-xLi [Li1/3Mn2/3]O2-yLiCoO2 (0≤x=y≤0.3 and x+y=0.5) cathode materials[J]. J. Electrochem. Soc., 2005, 152(1): A171-A178.
|
[15] |
ARMSTRONG A R, HOLZAPFEL M, NOVAK P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. J. Am. Chem. Soc., 2006, 128: 8694-8698.
|
[16] |
LU Z, DAHN J R. Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies[J]. J. Electrochem. Soc., 2002, 149(7): A815-A822.
|
[17] |
SHUNMUGASUNDARAM R, ARUMUGAM R S, DAHN J R. High capacity Li-rich positive electrode materials with reduced first-cycle irreversible capacity loss[J]. Chem. Mater., 2015, 27: 757-767.
|
[18] |
ARUNKUMAR T A, WU Y, MANTHIRAM A. Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O2-Li[M]O2 (M = Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) solid solutions[J]. Chem. Mater., 2007, 19: 3067-3073.
|
[19] |
XU G, LI J, XUE Q, et al. Elevated electrochemical performance of (NH4)3AlF6-coated 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material via a novel wet coating method[J]. Electrochim. Acta, 2014, 117: 41-47.
|
[20] |
SHI S J, TU J P, TANG Y Y, et al. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method[J]. Electrochim. Acta, 2013, 88: 671-679.
|
[21] |
KIM I T, KNIGHT J C, CELIO H, et al. Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating[J]. J. Mater. Chem. A, 2014, 2: 8696-8704.
|
[22] |
LIU H, CHEN C, DU C, et al. Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries[J]. J. Mater. Chem. A, 2015, 3: 2634-2641.
|
[23] |
LIN J, MU D, JIN Y, et al. Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery[J]. J. Power Sources, 2013, 230: 76-80.
|
[24] |
Remith P, Kalaiselvi N. Li1.2Mn0.6Ni0.1Co0.1O2 microspheres constructed by hierarchically arranged nanoparticles as lithium battery cathode with enhanced electrochemical performance[J]. Nanoscale, 2014, 6: 14724-14732.
|
[25] |
田昭武. 电化学研究方法[M]. 北京: 科学出版社, 1984: 252. TIAN Z W. Electrochemical Research Methods[M].Beijing:Science Press, 1984:252.
|