[1] |
ARMAND M, TARASCON J M. Building better batteries[J]. Nat., 2008, 451(7179):652-657.
|
[2] |
LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angew. Chem. Int. Ed., 2015, 54(15):4440-4457.
|
[3] |
田从学, 张昭, 侯隽, 等. 非化学计量比尖晶石型锂离子电池正极材料的合成与表征[J]. 化工学报, 2006, 57(4):937-942. TIAN C X, ZHANG Z, HOU J, et al. Synthesis and characterization of non stoichiometric spinel as anode for rechargeable lithium ion battery[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(4):937-942.
|
[4] |
MA G, Li S, ZHANG W X, et al. A general and mild approach to controllable preparation of manganese-base micro-and nanostructured bars for high performance lithium-ion batteries[J]. Angew. Chem. Int. Ed., 2016, 128:21-30.
|
[5] |
LIU Z, YU A, LEE J Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries[J]. J. Power Sources, 1999, s81/s82(9):416-419.
|
[6] |
JUNG S K, GWON H, HONG J, et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries[J]. Adv. Energy Mater., 2014, 4(1):94-98.
|
[7] |
HE Y S, MA Z F, LIAO X Z, et al. Synthesis and characterization of submicron-sized LiNi1/3Co1/3Mn1/3O2 by a simple self-propagating solid-state metathesis method[J]. J. Power Sources, 2007, 163(2):1053-1058.
|
[8] |
LI L J, LI X H, WANG Z X, et al. Synthesis of LiNi0.8Co0.1Mn0.1O2 cathode material by chloride co-precipitation method[J]. Trans. Nonferrous Met. Soc., China, 2010, 20:s279-s282.
|
[9] |
FU H Q, ZHANG X Y, HUANG H, et al. Conductivity property of polyaniline synthesized by emulsion polymerization[J]. J. Chem. Ind. Eng., 2005, 56(9):1790-1793.
|
[10] |
LEE M H, KANG Y J, MYUNG S T, et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3] O2 via co-precipitation[J]. Electrochim. Acta, 2004, 50(4):939-948.
|
[11] |
MANTHIRA A, KNIGHT J C, MYUNG S T, et al. Nickel-rich and lithium-lich layered oxide cathodes:progress and perspectives[J]. Adv. Energy Mater., 2016, 6(1). DOI:10.1002/aenm.201501010. http://onlinelibrary.wiley.com/doi/10.1002/aenm.201501010/full
|
[12] |
WRIGHT R B, CHRISTOPHERSEN J P, MOTLOCH C G, et al. Power fade and capacity fade resulting from cycle-life testing of advanced technology development program lithium-ion batteries[J]. J. Power Sources, 2003, 119/120/121(3):865-869.
|
[13] |
WOO S U, PARK B C, YOON C S, et al. Improvement of electrochemical performances of Li[Ni0.8Co0.1Mn0.1] O2 cathode materials by fluorine substitution[J]. J. Electrochem. Soc., 2007, 154(7):A649-A655.
|
[14] |
SUN Y K, LEE B R, NOH H J, et al. A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10] O2 cathode material for high-energy lithium batteries[J]. J. Mater. Chem., 2011, 21(27):10108-10112.
|
[15] |
NOH M, CHO J. Optimized synthetic conditions of LiNi0.5Co0.2Mn0.3O2 cathode materials for high rate lithium batteries via co-precipitation method[J]. J. Electrochem. Soc., 2012, 160(1):A105-A111.
|
[16] |
LI X, QIU K, GAO Y, et al. High potential performance of cerium-doped LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery[J]. J. Mater. Sci., 2015, 50(7):2914-2920.
|
[17] |
YANG Z H, LU J B, BIAN D C, et al. Stepwise co-precipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries[J]. J. Power Sources, 2014, 272:144-151.
|
[18] |
OHZUKU T, MAKIMURA Y. Layered lithium insertion material of LiCoNiO2 for lithium-ion batteries[J]. Chem. Lett., 2001, (7):642-643.
|
[19] |
KIM J M, CHUNG H T. Role of transition metals in layered Li[Ni,Co,Mn]O2 under electrochemical operation[J]. Electrochim. Acta, 2004, 49(21):3573-3580.
|
[20] |
王亮, 何雨石, 张晓鸣, 等. 微波共沉淀法制备锂离子电池正极材料LiNi0.8Co0.2O2[J]. 化工学报, 2007, 58(4):1048-1052. WANG L, HE Y S, ZHANG X M, et al. Preparation and electrochemical properties of LiNi0.8Co0.2O2 cathode material by microwave coprecipitation method[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(4):1048-1052.
|
[21] |
OHZUKU T, UETA A, NAGAYAMA M, et al. Comparative study of LiCoO2, LiNiCoO2 and LiNiO2 for 4 volt secondary lithium cells[J]. Electrochim. Acta, 1993, 38(9):1159-1167.
|
[22] |
HUANG Z D, LIU X M, OH S W, et al. Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries[J]. J. Mater. Chem., 2011, 21(29):10777-10784.
|
[23] |
LU J, PENG Q, WANG W Y, et al. Nanoscale coating of LiMO2(M=Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3:toward better rate capabilities for Li-ion batteries[J]. J. Am. Chem. Soc., 2013, 135(5):1649-1652.
|
[24] |
LIN F, NORDLUND D, LI Y, et al. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries[J]. Nat. Energy, 2016, 1(1). DOI:10.1038/nenergy.2015.4. http://www.nature.com/articles/nenergy20154
|
[25] |
SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nat. Mater., 2009, 8(4):320-324.
|
[26] |
SUN Y K, CHEN Z H, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nat. Mater., 2012, 11(11):942-947.
|
[27] |
YI T F, FANG Z K, XIE Y, et al. Synthesis of LiNi0.5Mn1.5O4 cathode with excellent fast charge-discharge performance for lithium-ion battery[J]. Electrochim. Acta, 2014, 147(147):250-256.
|
[28] |
KONAROVA M, TANIGUCHI I. Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries[J]. J. Power Sources, 2010, 195(11):3661-3667.
|
[29] |
SHAJU K M, RAO G V S, CHOWDARI B V R. Influence of Li-ion kinetics in the cathodic performance of layered Li(Ni1/3Co1/3Mn1/3)O2[J]. J. Electrochem. Soc., 2003, 151(9):A1324-A1332.
|
[30] |
LI J, CAO C, XU X, et al. LiNi1/3Co1/3Mn1/3O2 hollow nano-micro hierarchical microspheres with enhanced performances as cathodes for lithium-ion batteries[J]. J. Mater. Chem. A, 2013, 1(38):11848-11852.
|