[1] |
MA T, AKUYAMA M, ABE E, et al. High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode[J]. Nano. lett., 2005, 12(5):2543-2547.
|
[2] |
廖永进, 张亚平, 余岳溪, 等. MnOx/WO3/TiO2低温选择性催化还原NOx机理的原位红外研究[J]. 化工学报, 2016, 67(12):5031-5039. LIAO Y J, ZHANG Y P, YU Y X, et al. In situ FT-IR studies on low temperature NH3-SCR mechanism of NOx over MnOx/WO3/TiO2 catalyst[J]. CIESC Journal, 2016, 67(12):5031-5039.
|
[3] |
刘芳, 樊丰涛, 吕玉翠, 等. 石墨烯/TiO2复合材料光催化降解有机污染物的研究进展[J]. 化工学报, 2016, 67(5):1635-1643. LIU F, FAN F T, LÜ Y C, et al. Research progress on photocatalytic degradation of organic pollutants by graphene/TiO2 composite materials[J]. CIESC Journal, 2016, 67(5):1635-1643.
|
[4] |
LIANG B, LI C, ZHANG C G, et al. Leaching kinetics of panzhihua ilmenite in sulfuric acid[J]. Hydrometallurgy, 2005, 76(3/4):173-179.
|
[5] |
罗志强, 杜剑桥. 电子用高纯二氧化钛制备方法研究[J]. 涂料工业, 2011, 41(8):31-38. LUO Z Q, DU J Q. Research on preparation of high-purity TiO2 for electronic industry[J]. Paint and Coatings Industry, 2011, 41(8):31-38.
|
[6] |
方世杰, 徐明霞, 纳米TiO2光催化剂的制备方法[J]. 硅酸盐通报, 2002, 21(2):38-42. FANG S J, XU M X. Preparation of nanocrystalline TiO2 photocatalyst[J]. Bulletin of the Chinese Ceramic Society, 2002, 21(2):38-42.
|
[7] |
HANAOR D A H, CHIRONI I, KARATCHEVTSEVA I, et al. Single and mixed phase TiO2 powders prepared by excess hydrolysis of titanium alkoxide[J]. Advances in Applied Ceramics, 2012, 111(3):149-158.
|
[8] |
AKHTAR M K, XIONG Y, PRATSINIS S E. Vapor synthesis of titania powder by titanium tetrachloride oxidation[J]. American Institute of Chemical Engineers, 1991, 37(10):1561-1570.
|
[9] |
XIA B, LI W B, ZHANG B, et al. Low temperature vapor phase preparation of TiO2 nanopowders[J]. J. Mat. Sci., 1999, 34(14):3505-3511.
|
[10] |
YEOM S M, KIM K H, SHIN D W, et al. Preparation and characterization of fine TiO2 powders by vapor-phase hydrolysis of TiCl4[J]. Journal of the Korean Ceramic Society, 1992, 29(7):525-532.
|
[11] |
JOHN A K, SAVITHRI S, SURENDER G D. Characterization of titania nanoparticles synthesized through low temperature aerosol process[J]. Aerosol and Air Quality Research, 2005, 5(1):1-13.
|
[12] |
ZHU X L, ZHANG Q, WANG Y, et al. Review on the nanoparticle fluidization science and technology[J]. Chinese J. Chem. Eng., 2016, 24(1):9-22.
|
[13] |
陆金东, 陈爱平, 马磊, 等. 流化床CVD法原位合成CNTs-Ni-TiO2及其光催化性能[J]. 化工学报, 2012, 63(4):1070-1075. LU J D, CHEN A P, MA L, et al. Synthesis of CNTs-Ni-TiO2 nanocomposites by in-situ fluidized bed CVD and its photocatalytic activity[J]. CIESC Journal, 2012, 63(4):1070-1075.
|
[14] |
LI J, KONG J, ZHU Q S, et al. Efficient synthesis of iron nanoparticles by self-agglomeration in a fluidized bed[J]. AIChE Journal[J]. 2017, 63(2):459-468.
|
[15] |
LI J, LIU X W, ZHOU L, et al. A two-stage reduction process for production of high purity ultrafine Ni particle in a micro-fluidized bed reactor[J]. Particuology, 2015, 19(2):27-34.
|
[16] |
LI J, ZHOU L, ZHU Q S, et al. Decoupling reduction-sulfurization synthesis of inorganic fullerene-like WS2 nanoparticles in a particulately fluidized bed[J]. Chem. Eng. J., 2014, 249(1):54-62.
|
[17] |
ZHANG Q, ZHAO M Q, HUANG J Q, et al. Mass production of aligned carbon nanotube arrays by fluidized bed catalytic chemical vapor deposition[J]. Carbon, 2010, 48(4):1196-1209.
|
[18] |
WANG C J, WANG T F, LI P L, et al. Recycling of SiCl4 in the manufacture of granular polysilicon in a fluidized bed reactor[J]. Chem. Eng. J., 2013, 220(6):81-88.
|
[19] |
PEAN D A, UPHADE B S, SMIMIOTIS P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3:evaluation and characterization of first row transition metals[J]. J. Catal., 2004, 221(2):421-431.
|
[20] |
姜贵民, 严继康, 杨钢, 等. TiO2晶型转变(A R)的影响因素[J]. 材料导报A, 2016, 30(10):95-100. JIANG G M, YAN J K, YANG G, et al. Influencing factors of crystal phase transformation (A R) of TiO2[J]. Materials Review A, 2016, 30(10):95-100.
|
[21] |
唐爱东, 任艳萍. 二氧化钛催化剂晶型调控技术的研究进展[J]. 中国粉体技术, 2010, 16(3):69-73. TANG A D, REN Y P. Recent advances in phase transition of titania cayalyst[J]. China Powder Science and Technology, 2010, 16(3):69-73.
|
[22] |
MACKENZIE K J D, MELLING P J. The calcination of titania. Ⅱ. Influence of atmosphere on crystal growth in anatase powders[J]. Trans. J. Br. Ceram. Soc., 1974, 73(6):179-183.
|
[23] |
刘秀红, 赵尹, 姜海波, 等. 扩散火焰法制备TiO2纳米晶及其光催化活性[J]. 华东理工大学学报(自然科学版), 2007, 33(2):200-204. LIU X H, ZHAO Y, JIANG H B, et al. Preparation of TiO2 nanocrystallite by co-flow diffusion flames and their photocatalytic activity[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2007, 33(2):200-204.
|
[24] |
吕林英, 蓝兴英, 吴迎亚, 等. FCC提升管反应器中颗粒聚团对裂化反应的影响[J]. 化工学报, 2015, 66(8):2920-2928. LÜ L Y, LAN X Y, WU Y Y, et al. Effect of particles cluster on behavior of catalytic cracking reaction in FCC riser[J]. CIESC Journal, 2015, 66(8):2920-2928.
|
[25] |
JOHN A K, SAVITHRI S, KUNDUCHI P, et al. Density functional theory study of gas phase hydrolysis of titanium tetrachloride[J]. Bull. Chem. Soc. Jpn., 2010, 83(9):1030-1036.
|
[26] |
LEE K R, KIM S J, SONG J S, et al. Effect of vapor pressure of H2O on the formation of nano-crystalline TiO2 ultrafine powders[J]. MRS Online Proceedings Library, 1999, 58(1):33-39.
|
[27] |
陈瑞澄. 四氯化钛水解过程的研究[J]. 湿法冶金, 1999, 71(3):1-7. CHEN R C. Study on the hydrolysis of four titanium chloride[J]. Hydrometallurgy of China, 1999, 71(3):1-7.
|
[28] |
张煜昌. 3D-TiO2-Ag复合材料对水体中碘离子的吸附性能研究[D]. 天津:天津大学, 2013. ZHANG Y C. A study on the adsorption properties of iodine ion on 3D-TiO2-Ag composites in water solution[D]. Tianjin:Tianjin University, 2013.
|
[29] |
ZHANG X Y, LIU Y, YE J W. Fabrication and characterisation of magneli phase Ti4O7 nanoparticles[J]. Micro & Nano Letters, 2013, 8(5):251-253.
|
[30] |
操小鑫, 陈亦琳, 林碧洲, 等. 氧缺陷型TiO2-x可见光催化性能的研究[J]. 无机材料学报, 2012, 27(12):1301-1305. CAO X X, CHEN Y L, LIN B Z, et al. Study of the photocatalytic performance of oxygen-deficient TiO2 active in visible light[J]. Journal of Inorganic Materials, 2012, 27(12):1301-1305.
|