[1] |
田晓冬, 李肖, 杨桃, 等. 双金属氧化物和复合材料的合成及其在超级电容器中的应用进展[J]. 无机材料学报, 2017, 32(5):459-468. TIAN X D, LI X, YANG T, et al. Recent advances on synthesis and supercapacitor application of binary metal oxide[J]. Journal of Inorganic Materials, 2017, 32(5):459-468.
|
[2] |
严琳, 孔惠, 李在均. 3D石墨烯/镍铝层状双金属氢氧化物的制备及超级电容性能[J]. 化学学报, 2013, 71:822-828. YAN L, KONG H, LI Z J. Synthesis and supercapacitor property of three-dimensional graphene/Ni-Al layered double hydroxide composite[J]. Acta Chimica Sinica, 2013, 71:822-828.
|
[3] |
CHEN H, ZHOU S X, CHEN M, et al. Reduced graphene oxide-MnO2 hollow sphere hybrid nanostructures as high-performance electrochemical capacitors[J]. J. Mater. Chem., 2012, 22(48):25207-25216.
|
[4] |
ZHANG J T, ZHAO X S. A comparative study of electrocapacitive properties of manganese dioxide clusters dispersed on different carbons[J]. Carbon, 2013, 52:1-9.
|
[5] |
BAE J, SONG M K, PARK Y J, et al. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage[J]. Angew. Chem. Int. Edit., 2011, 50(7):1683-1687.
|
[6] |
KATAKABE T, KANEKO T, WATANABE W, et al. Electric double-layer capacitors using "bucky gels" consisting of an ionic liquid and carbon nanotubes[J]. J. Electrochem. Soc., 2005, 152(10):A1913-A1916.
|
[7] |
STOLLER M D, PARK S J, ZHU Y W, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10):3498-3502.
|
[8] |
FRACKOWIAK E, BEGUIN F. Carbon materials for the electrochemical storage of energy incapacitors[J]. Carbon, 2001, 39:937-950.
|
[9] |
PROBSTLE H, SCHMITT C, FRICKE J. Button cell supercapacitors with monolithic carbon aerogels[J]. J. Power Sources, 2002, 105(2):189-194.
|
[10] |
PARK J H, KO J M, PARK O O. Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors[J]. J. Electrochem. Soc., 2003, 150(7):A864-A867.
|
[11] |
KIM T Y, LEE H W, STOLLE M, et al. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes[J]. ACS Nano, 2011, 5(1):436-440.
|
[12] |
黄雪梅. 石墨烯/MnO2复合材料的制备及其电化学性能研究[D]. 长沙:中南大学, 2013. HUANG X M. Preparation of graphene/MnO2 composites and electrochemical performance research[D]. Changsha:Central South University, 2013.
|
[13] |
XIONG G P, HEMBRAM K P S S, REIFENBERGER R G, et al. MnO2-coated graphitic petals for supercapacitor electrodes[J]. J. Power Sources, 2013, 227:254-259.
|
[14] |
张妍兰, 王令云, 王菡, 等. 聚苯胺/石墨烯复合材料的制备及应用[J]. 化工新型材料, 2015, 43(8):1-3. ZHANG Y L, WANG L Y, WANG H, et al. Preparation and application of polyaniline/graphene composites[J]. New Chemical Materials,2015, 43(8):1-3.
|
[15] |
WU Z S, WANG D W, REN W, et al. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors[J]. Adv. Funct. Mater., 2010, 20(20):3595-3602.
|
[16] |
ATHOUEL L, MOSER F, DUGAS R, et al. Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte[J]. J. Phys. Chem. C, 2008, 112(18):7270-7277.
|
[17] |
BABAKHANI B, IVEY D G. Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors[J]. J. Power Sources, 2010, 195(7):2110-2117.
|
[18] |
XIA X H, TU J P, ZHANG Y Q, et al. Freestanding Co3O4 nanowire array for high performance supercapacitors[J]. RSC Adv., 2012, 2(5):1835-1841.
|
[19] |
PANG M J, LONG G H, JIANG S, et al. Ethanol-assisted solvothermal synthesis of porous nanostructured cobalt oxides (CoO/Co3O4) for high-performance supercapacitors[J]. Chem. Eng. J., 2015, 280:377-384.
|
[20] |
WANG D W, LI F, CHENG H M. Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor[J]. J. Power Sources, 2008, 185(2):1563-1568.
|
[21] |
PANG M J, LONG G H, JIANG S, et al. One pot low-temperature growth of hierarchical δ-MnO2 nanosheets on nickel foam for supercapacitor applications[J]. Electrochimica Acta, 2015, 161:297-304.
|
[22] |
ZHANG X, SUN X Z, ZHANG H T, et al. Comparative performance of birnessite-type MnO2 nanoplates and octahedral molecular sieve (OMS-5) nanobelts of manganese dioxide as electrode materials for supercapacitor application[J]. Electrochim. Acta, 2014, 132:315-322.
|
[23] |
庞明俊. 锰/钴/镍基功能纳米材料的制备及其超级电容器性能的研究[D]. 长春:吉林大学, 2016. PANG M J. Synthesis and electrochemical performance of Mn/Co/Ni based functional nanomaterials for supercapacitor[D]. Changchun:Jilin University, 2016.
|
[24] |
MAO L, ZHANG K, CHAN H S O, et al. Nanostructured MnO2/graphene composites for supercapacitor electrodes:the effect of morphology, crystallinity and composition[J]. J. Mater. Chem., 2012, 22(5):1845-1851.
|
[25] |
YAN J, FAN Z J, WEI T, et al. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes[J]. Carbon, 2010, 48(13):3825-3833.
|
[26] |
KIM M, HWANG Y, KIM J. Graphene/MnO2-based composites reduced via different chemical agents for supercapacitors[J]. J. Power Sources, 2013, 239:225-233.
|
[27] |
PARK S J, RUOFF R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4):217-224.
|
[28] |
WEN Z W, SHE W, LI Y S, et al. Paramecium-like alpha-MnO2 hierarchical hollow structures with enhanced electrochemical capacitance prepared by a facile dopamine carbon-source assisted shell-swelling etching method[J]. J. Mater. Chem. A, 2014, 2(48):20729-20738.
|
[29] |
PANG M J, LONG G H, JIANG S, et al. Rapid synthesis of graphene/amorphous-MnO2 composite with enhanced electrochemical performance for electrochemical capacitor[J]. Materials Science and Engineering B, 2015, 194:41-47.
|
[30] |
GHODBANE O, PASCAL J L, FAVIER F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors[J]. ACS Applied Materials and Interfaces, 2009, 1(5):1130-1139.
|
[31] |
谢小英.石墨烯基超级电容器:电极材料制备及储能机理研究[D]. 天津:天津大学, 2013. XIE X Y. Graphene based supercapacitors:supercapacitor preparation and electrochemical energy storage mechanism of electrode materials[D]. Tianjin:Tianjin University, 2013.
|