CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 319-326.DOI: 10.11949/j.issn.0438-1157.20180717
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Channa WANG1(),Ling LIU1,Huihua WANG1,2(),Tianpeng QU1,Jun TIAN1,Deyong WANG1,Zhenhui KANG2
Received:
2018-07-02
Revised:
2018-09-07
Online:
2019-01-05
Published:
2019-01-05
Contact:
Huihua WANG
王婵娜1(),刘令1,王慧华1,2(),屈天鹏1,田俊1,王德永1,康振辉2
通讯作者:
王慧华
作者简介:
王婵娜(1994—),女,硕士研究生,<email>18297112628@163.com</email>|王慧华(1976—),女,博士后,副教授,<email>hhwang@suda.edu.cn</email>
基金资助:
CLC Number:
Channa WANG, Ling LIU, Huihua WANG, Tianpeng QU, Jun TIAN, Deyong WANG, Zhenhui KANG. Controllable preparation of Co-Fe-Pd nanoparticles and their catalytic activities toward oxygen reduction[J]. CIESC Journal, 2019, 70(1): 319-326.
王婵娜, 刘令, 王慧华, 屈天鹏, 田俊, 王德永, 康振辉. Co-Fe-Pd纳米粒子的可控制备及其氧还原催化性能[J]. 化工学报, 2019, 70(1): 319-326.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180717
Fig.1 Different magnification TEM images and electron diffraction pattern of selected area marked by red rectangle for Co5Fe2Pd1 nanoparticles synthesized in solution with [citric acid] = 0.05 mol/L and V(alcohol) =20 ml
Nanoparticle | Component | After ultrasonic | Product compositon |
---|---|---|---|
Co5Fe2 | 5∶2 | 0.89∶1.12 | Co0.89Fe1.12 |
Co5Pd1 | 5∶1 | 0.75∶0.87 | Co0.75Pd0.87 |
Fe2Pd1 | 2∶1 | 1.09∶0.77 | Fe1.09Pd0.77 |
Co5Fe2Pd1 | 5∶2∶1 | 0.82∶1∶0.82 | Co0.82Fe1Pd0.82 |
Table 1 XPS analysis of Co-Fe-Pd nanoparticles
Nanoparticle | Component | After ultrasonic | Product compositon |
---|---|---|---|
Co5Fe2 | 5∶2 | 0.89∶1.12 | Co0.89Fe1.12 |
Co5Pd1 | 5∶1 | 0.75∶0.87 | Co0.75Pd0.87 |
Fe2Pd1 | 2∶1 | 1.09∶0.77 | Fe1.09Pd0.77 |
Co5Fe2Pd1 | 5∶2∶1 | 0.82∶1∶0.82 | Co0.82Fe1Pd0.82 |
1 | 王瀛, 张丽敏, 胡天军. 金属空气电池阴极氧还原催化剂研究进展[J]. 化学学报, 2015, 73(4): 316-325. |
WangY, ZhangL M, HunT J. Progress in oxygen reduction reaction electro catalysts for metal-air batteries[J]. Acta Chimica Sinica, 2015, 73(4): 316-325. | |
2 | 朱明骏, 袁振善, 桑林, 等. 金属/空气电池的研究进展[J]. 电源技术, 2012, 36(12): 1953-1958. |
ZhuM J, YuanZ P, SangL, et al. Research progresses of metal/air batteries[J]. Chinese Journal of Power Sources, 2012, 36(12): 1953-1958. | |
3 | 李彦龙, 王为. 金属-空气电池中空气电极的研究进展[J].电源技术, 2015,5(9):1106-1109. |
LiY L, WangW. Research progress of air electrode for metal-air battery[J]. Chinese Journal of Power Sources, 2015, 5(9): 1106-1109 | |
4 | 周宇, 王宇新. 杂原子掺杂碳基氧还原反应电催化剂研究进展[J]. 化工学报, 2017, 68(2): 520-534. |
ZhouY, WangY X. Recent progress on electrocatalysts towards oxygen reduction reaction based on heteroatoms-doped carbon[J]. CIESC Journal, 2017, 68(2): 520-534. | |
5 | FofanaD, NatarajanS K, HamelinJ, et al. Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach[J]. Energy, 2014, 64: 398-403. |
6 | DemarconnayL, CoutanceauC, LégerJ M. Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts—effect of the presence of methanol[J]. Electrochimica Acta, 2004, 49(25): 4513-4521. |
7 | 金燕仙, 施梅勤, 刘委明, 等. Pt/WC-CNTs催化剂的制备及其对氧还原的电催化性能[J]. 化工学报, 2014, 65(10): 4015-4024. |
JinY X, ShiM Q, LiuW M, et al. Pt/WC-CNTs electro catalyst for oxygen reduction reaction[J]. CIESC Journal, 2014, 65(10): 4015-4024. | |
8 | NieY, LiL, WeiZ. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical Society Reviews, 2015, 44(8): 2168-2201. |
9 | ZhuC, LiH, FuS, et al. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three dimensional porous carbon nanostructures[J]. Chemical Society Reviews, 2016, 45(3): 517-531. |
10 | ZhouM, WangH L, GuoS. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials[J]. Chemical Society Reviews, 2016,45(5): 1273-1307. |
11 | 聂瑶, 丁炜, 魏子栋. 质子交换膜燃料电池非铂电催化剂研究进展[J]. 化工学报, 2015, 66(9): 3305-3318. |
NieY, DingW, WeiZ D. Recent advancements of Pt-free catalysts for polymer electrolyte membrane fuel cells[J]. CIESC Journal , 2015, 66(9): 3305-3318. | |
12 | SaY J, ParkC, JeongY, et al. Carbon nanotubes/heteroatom-doped carbo core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells[J]. Angewandte Chemie International Edition, 2014, 53(16): 4102-4106. |
13 | HuC, WangL, ZhaoY, et al. Designing nitrogen-enriched echinus-like carbon capsules for highly efficient oxygen reduction reaction and lithium ion storage[J]. Nanoscale, 2014, 6(14): 8002-8009. |
14 | 邹志君, 郑龙珍, 熊乐艳, 等. 一种新型的Fe-N/C氧还原反应电催化剂的制备及其性能研究[J]. 化工学报, 2014, 42(11): 60-62. |
ZouZ J, ZhengL Z, XiongL Y, et al. Preparation and performance of a new type of Fe-N/C catalyst for oxygen reduction reaction[J]. CIESC Journal, 2014, 42(11): 60-62. | |
15 | FofanaD, NatarajanS K, HamelinJ, et al. Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach[J]. Energy, 2014, 64(64): 398-403. |
16 | KimJ, MommaT, OsakaT. Cell performance of Pd–Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane[J]. Journal of Power Sources, 2009, 189(2): 999-1002. |
17 | VinodgopalK, HeY, AshokkumarM, et al. Sonochemically prepared platinum-ruthenium bimetallic nanoparticles[J]. Journal of Physical Chemistry B, 2006, 110(9): 3849-52. |
18 | NakanishiM, TakataniH, KobayashiY, et al. Characterization of binary gold/platinum nanoparticles prepared by sonochemistry technique[J]. Applied Surface Science, 2005, 241(1): 209-212. |
19 | 魏建红, 官建国, 袁润章. 金属纳米粒子的制备与应用[J]. 武汉理工大学学报, 2001, 23(3): 1-4. |
WeiJ H, GuanJ G, YuanR Z. Preparation and application of metal nano particles[J]. Journal of Wuhan University of Technology, 2001, 23(3): 1-4. | |
20 | KimJ, MommaT, OsakaT. Synthesis of carbon-supported Pd-Sn catalyst by ultrasonic irradiation for oxygen reduction reaction[J]. Journal of Power Sources, 2009, 189 (2): 909-914. |
21 | WuY, WangC, ZouL, et al. Incorporation of cobalt into Pd2Sn intermetallic nanoparticles as durable oxygen reduction electrocatalyst[J]. Journal of Electroanalytical Chemistry, 2017, 789: 167-171. |
22 | VinodgopalK, HeY, AshokkumarM, et al. Sonochemically prepared platinum-ruthenium bimetallic nanoparticles[J]. Journal Physical Chemistry B, 2006, 110(9): 3849-3853. |
23 | OxleyJ D, MdleleniM M, SuslickK S. Hydrodehalogenation with sonochemically prepared Mo2C and W2C[J]. Catalyst Today, 2004, 88(3/4): 139-146. |
24 | MizukoshiY, TsuruY, TominagaA, et al. Sonochemical immobilization of noble metal nanoparticles on the surface of maghemite: mechanism and morphological control of the products[J]. Ultrasonics Sonochemistry, 2008, 15(5): 875-80. |
25 | KimJ, ParkJ E, MommaT, et al. Synthesis of Pd-Sn nanoparticles by ultrasonic irradiation and their electrocatalytic activity for oxygen reduction[J]. Electrochimica Acta, 2009, 54(12): 3412-3418. |
26 | YuJ C, YuJ, HoW, et al. Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation[J]. Chemical Communications, 2001, (19): 1942-1943. |
27 | KimJ, MommaT, OsakaT. Synthesis of carbon-supported Pd-Sn catalyst by ultrasonic irradiation for oxygen reduction reaction[J]. Journal Power Sources, 2009, 189(2): 909-914. |
28 | BirryL, ZagalJ H, DodeletJ P. Does CO poison Fe-based catalysts for ORR[J]. Electrochemistry Communications, 2010, 12(5): 628-631. |
29 | VenarussoL B, BooneC V, BettiniJ, et al. Carbon-supported metal nanodendrites as efficient, stable catalysts for the oxygen reduction reaction[J]. Journal of Material Chemistry A, 2018, 6 (4): 1714-1726. |
30 | LuG L, ZhuY L, LuL, et al. Iron-rich nanoparticle encapsulated, nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells[J]. Journal of Power Sources, 2016, 315: 302-307. |
31 | WangX P, KariukiN, VaugheyJ T. Bimetallic Pd-Cu oxygen reduction electrocatalystsfuel cells and energy conversion[J]. Journal of the Electrochemistry Society, 2018, 155(6): B602-B609. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[9] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[10] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[11] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[12] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[13] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[14] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[15] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||