CIESC Journal ›› 2019, Vol. 70 ›› Issue (8): 3132-3141.DOI: 10.11949/0438-1157.20190072
Previous Articles Next Articles
Yanpei SONG1,3(),Xiuzheng ZHUANG1,3,Hao ZHAN2,3,Nantao WANG1,3,Xiuli YIN1(),Chuangzhi WU1,3
Received:
2019-01-25
Revised:
2019-04-18
Online:
2019-08-05
Published:
2019-08-05
Contact:
Xiuli YIN
宋艳培1,3(),庄修政1,3,詹昊2,3,王南涛1,3,阴秀丽1(),吴创之1,3
通讯作者:
阴秀丽
作者简介:
宋艳培(1994—),女,硕士研究生,<email>songyp@ms.giec.ac.cn</email>
基金资助:
CLC Number:
Yanpei SONG, Xiuzheng ZHUANG, Hao ZHAN, Nantao WANG, Xiuli YIN, Chuangzhi WU. Investigation on synergistic characteristics of sludge and lignite during co-hydrothermal carbonization[J]. CIESC Journal, 2019, 70(8): 3132-3141.
宋艳培, 庄修政, 詹昊, 王南涛, 阴秀丽, 吴创之. 污泥与褐煤共水热碳化的协同特性研究[J]. 化工学报, 2019, 70(8): 3132-3141.
Add to citation manager EndNote|Ris|BibTeX
Sample | Proximate analysis/%(mass, db) | Ultimate analysis /%(mass,daf) | Fuel ratio | HHV / (J·g-1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
A | VM | FC | C | H | O | N | S | |||
SS | 56.11 | 37.57 | 6.32 | 48.46 | 8.20 | 34.61 | 7.59 | 1.14 | 0.17 | 9451 |
DS | 66.02 | 32.65 | 1.33 | 57.45 | 7.18 | 32.19 | 2.59 | 0.59 | 0.04 | 5520 |
LC | 6.73 | 48.41 | 44.86 | 65.70 | 5.02 | 27.84 | 0.90 | 0.54 | 0.93 | 24100 |
Table 1 Properties of three raw materials
Sample | Proximate analysis/%(mass, db) | Ultimate analysis /%(mass,daf) | Fuel ratio | HHV / (J·g-1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
A | VM | FC | C | H | O | N | S | |||
SS | 56.11 | 37.57 | 6.32 | 48.46 | 8.20 | 34.61 | 7.59 | 1.14 | 0.17 | 9451 |
DS | 66.02 | 32.65 | 1.33 | 57.45 | 7.18 | 32.19 | 2.59 | 0.59 | 0.04 | 5520 |
LC | 6.73 | 48.41 | 44.86 | 65.70 | 5.02 | 27.84 | 0.90 | 0.54 | 0.93 | 24100 |
Sample | Proximate analysis/%(mass,db) | Ultimate analysis/%(mass,daf) | Fuel ratio | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | VM | FC | C | H | O | N | S | EV | CV | SC/% | ||
LC/SS | L0∶S1 | 76.46 | 19.80 | 3.74 | 56.19 | 8.62 | 29.41 | 4.46 | 1.32 | 0.19 | — | — |
L3∶S7 | 51.77 | 30.27 | 17.96 | 61.00 | 6.53 | 29.13 | 2.72 | 0.62 | 0.59 | 0.44 | 36.26 | |
L5∶S5 | 35.59 | 35.25 | 29.16 | 62.90 | 5.69 | 28.92 | 2.02 | 0.47 | 0.83 | 0.60 | 37.94 | |
L7∶S3 | 23.42 | 39.72 | 36.86 | 64.22 | 5.41 | 28.42 | 1.57 | 0.38 | 0.93 | 0.76 | 21.49 | |
L1∶S0 | 6.49 | 46.52 | 46.99 | 66.72 | 4.85 | 27.10 | 1.03 | 0.30 | 1.01 | — | — | |
LC/DS | L0∶D1 | 70.61 | 25.53 | 3.86 | 59.54 | 7.04 | 32.13 | 0.92 | 0.37 | 0.15 | — | — |
L3∶D7 | 50.40 | 33.45 | 16.15 | 62.06 | 5.83 | 30.83 | 0.92 | 0.36 | 0.48 | 0.41 | 18.01 | |
L5∶D5 | 37.04 | 36.29 | 26.67 | 63.50 | 5.51 | 29.75 | 0.92 | 0.32 | 0.73 | 0.58 | 26.55 | |
L7∶D3 | 24.37 | 40.71 | 34.92 | 64.83 | 5.45 | 28.48 | 0.93 | 0.31 | 0.86 | 0.75 | 13.97 | |
L1∶D0 | 6.49 | 46.52 | 46.99 | 66.72 | 4.85 | 27.10 | 1.03 | 0.30 | 1.01 | — | — |
Table 2 Properties of hydrochars derived from LC/SS and LC/DS
Sample | Proximate analysis/%(mass,db) | Ultimate analysis/%(mass,daf) | Fuel ratio | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | VM | FC | C | H | O | N | S | EV | CV | SC/% | ||
LC/SS | L0∶S1 | 76.46 | 19.80 | 3.74 | 56.19 | 8.62 | 29.41 | 4.46 | 1.32 | 0.19 | — | — |
L3∶S7 | 51.77 | 30.27 | 17.96 | 61.00 | 6.53 | 29.13 | 2.72 | 0.62 | 0.59 | 0.44 | 36.26 | |
L5∶S5 | 35.59 | 35.25 | 29.16 | 62.90 | 5.69 | 28.92 | 2.02 | 0.47 | 0.83 | 0.60 | 37.94 | |
L7∶S3 | 23.42 | 39.72 | 36.86 | 64.22 | 5.41 | 28.42 | 1.57 | 0.38 | 0.93 | 0.76 | 21.49 | |
L1∶S0 | 6.49 | 46.52 | 46.99 | 66.72 | 4.85 | 27.10 | 1.03 | 0.30 | 1.01 | — | — | |
LC/DS | L0∶D1 | 70.61 | 25.53 | 3.86 | 59.54 | 7.04 | 32.13 | 0.92 | 0.37 | 0.15 | — | — |
L3∶D7 | 50.40 | 33.45 | 16.15 | 62.06 | 5.83 | 30.83 | 0.92 | 0.36 | 0.48 | 0.41 | 18.01 | |
L5∶D5 | 37.04 | 36.29 | 26.67 | 63.50 | 5.51 | 29.75 | 0.92 | 0.32 | 0.73 | 0.58 | 26.55 | |
L7∶D3 | 24.37 | 40.71 | 34.92 | 64.83 | 5.45 | 28.48 | 0.93 | 0.31 | 0.86 | 0.75 | 13.97 | |
L1∶D0 | 6.49 | 46.52 | 46.99 | 66.72 | 4.85 | 27.10 | 1.03 | 0.30 | 1.01 | — | — |
Sample | Residues /%(mass) | Characteristic temperatures /℃ | (dw/dt)max/ (%(mass)·min-1) | (dw/dt)mean / (%(mass)·min-1) | S×108/ (min-2·℃-3) | ||
---|---|---|---|---|---|---|---|
T i | T m | T b | |||||
SS | 57.7 | 210.8 | 309.1 | 730.5 | -1.81 | -0.60 | 3.37 |
L0S1 | 76.6 | 222.7 | 313.3 | 711.3 | -0.95 | -0.34 | 0.92 |
L3S7 | 52.7 | 315.7 | 384.7 | 696.9 | -5.25 | -0.71 | 5.36 |
L5S5 | 37.5 | 319.7 | 371.1 | 681.1 | -7.69 | -0.96 | 10.60 |
L7S3 | 25.8 | 325.4 | 366.7 | 669.2 | -9.74 | -1.16 | 15.96 |
L1S0 | 9.0 | 333.3 | 364.5 | 662.1 | -13.96 | -1.44 | 27.32 |
DS | 50.9 | 240.3 | 330.7 | 789.5 | -1.57 | -0.65 | 2.23 |
L0D1 | 60.3 | 292.1 | 338.9 | 772.3 | -1.22 | -0.53 | 0.99 |
L3D7 | 43.9 | 299.4 | 375.7 | 745.4 | -3.38 | -0.78 | 3.97 |
L5D5 | 34.0 | 310.2 | 375.0 | 740.4 | -5.03 | -0.93 | 6.56 |
L7D3 | 29.2 | 312.4 | 367.3 | 716.1 | -5.87 | -1.03 | 8.67 |
L1D0 | 9.0 | 333.3 | 364.5 | 662.1 | -13.96 | -1.44 | 27.32 |
Table 3 Characteristic temperatures and combustibility index of feedstocks and hydrochars
Sample | Residues /%(mass) | Characteristic temperatures /℃ | (dw/dt)max/ (%(mass)·min-1) | (dw/dt)mean / (%(mass)·min-1) | S×108/ (min-2·℃-3) | ||
---|---|---|---|---|---|---|---|
T i | T m | T b | |||||
SS | 57.7 | 210.8 | 309.1 | 730.5 | -1.81 | -0.60 | 3.37 |
L0S1 | 76.6 | 222.7 | 313.3 | 711.3 | -0.95 | -0.34 | 0.92 |
L3S7 | 52.7 | 315.7 | 384.7 | 696.9 | -5.25 | -0.71 | 5.36 |
L5S5 | 37.5 | 319.7 | 371.1 | 681.1 | -7.69 | -0.96 | 10.60 |
L7S3 | 25.8 | 325.4 | 366.7 | 669.2 | -9.74 | -1.16 | 15.96 |
L1S0 | 9.0 | 333.3 | 364.5 | 662.1 | -13.96 | -1.44 | 27.32 |
DS | 50.9 | 240.3 | 330.7 | 789.5 | -1.57 | -0.65 | 2.23 |
L0D1 | 60.3 | 292.1 | 338.9 | 772.3 | -1.22 | -0.53 | 0.99 |
L3D7 | 43.9 | 299.4 | 375.7 | 745.4 | -3.38 | -0.78 | 3.97 |
L5D5 | 34.0 | 310.2 | 375.0 | 740.4 | -5.03 | -0.93 | 6.56 |
L7D3 | 29.2 | 312.4 | 367.3 | 716.1 | -5.87 | -1.03 | 8.67 |
L1D0 | 9.0 | 333.3 | 364.5 | 662.1 | -13.96 | -1.44 | 27.32 |
1 | Saba A , Saha P , Reza M T . Co-hydrothermal carbonization of coal-biomass blend: influence of temperature on solid fuel properties[J]. Fuel Processing Technology, 2017, 167: 711-720. |
2 | Kambo H S , Dutta A . A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 359-378. |
3 | Parshetti G , Liu Z , Jain A , et al . Hydrothermal carbonization of sewage sludge for energy production with coal[J]. Fuel, 2013, 111(3): 201-210. |
4 | Mun T Y , Tumsa T Z , Lee U , et al . Performance evaluation of co-firing various kinds of biomass with low rank coals in a 500 MWe coal-fired power plant[J]. Energy, 2016, 115: 954-962. |
5 | Zhuang X Z , Huang Y Q , Liu H C , et al . Relationship between physicochemical properties and dewaterability of hydrothermal sludge derived from different source[J]. Journal of Environmental Sciences, 2018, 69(7): 1-10. |
6 | Zhuang X Z , Zhan H , Huang Y Q , et al . Conversion of industrial biowastes to clean solid fuels via hydrothermal carbonization (HTC): upgrading mechanism in relation to coalification process and combustion behavior[J]. Bioresource Technology, 2018, 267: 17-29. |
7 | Liao J , Fei Y , Marshall M , et al . Hydrothermal dewatering of a Chinese lignite and properties of the solid products[J]. Fuel, 2016, 180: 473-480. |
8 | Wu J H , Wang J , Liu J Z , et al . Moisture removal mechanism of low-rank coal by hydrothermal dewatering: physicochemical property analysis and DFT calculation[J]. Fuel, 2017, 187: 242-249. |
9 | Liu J Z , Wu J H , Zhu J F , et al . Removal of oxygen functional groups in lignite by hydrothermal dewatering: an experimental and DFT study[J]. Fuel, 2016, 178: 85-92. |
10 | Alvarez R , Clemente C , Gomez-Limon D . The influence of nitric acid oxidation of low rank coal and its impact on coal structure [J]. Fuel, 2003, 82(15): 2007-2015. |
11 | Zhuang X Z , Huang Y Q , Song Y P , et al . The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresource Technology, 2017, 245(Pt A): 463-470. |
12 | Zhang X J , Zhang L , Li A M . Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: synergistic effects and products characterization[J]. Journal of Environmental Management, 2017, 201(2): 52-62. |
13 | Yao Z L , Ma X Q . Characteristics of co-hydrothermal carbonization on polyvinyl chloride wastes with bamboo[J]. Bioresource Technology, 2017, 247: 302-309. |
14 | 王定美, 王跃强, 袁浩然, 等 . 水热炭化制备污泥生物炭的碳固定[J]. 化工学报, 2013, 64(7): 2625-2632. |
Wang D M , Wang Y Q , Yuan H R , et al . Carbon fixation of sludge biochar by hydrothermal carbonization[J]. CIESC Journal, 2013, 64(7): 2625-2632. | |
15 | Liao Y F , Ma X Q . Thermogravimetric analysis of the co-combustion of coal and paper mill sludge[J]. Applied Energy, 2010, 87(11): 3526-3532. |
16 | Li F Y , Cao X D , Zhao L , et al . Effects of mineral additives on biochar formation: carbon retention, stability, and properties[J]. Environmental Science & Technology, 2014, 48(19): 11211-11217. |
17 | Tay J H , Chen X G , Jeyaseelan S , et al . Optimising the preparation of activated carbon from digested sewage sludge and coconut husk[J]. Chemosphere, 2001, 44(1): 45-51. |
18 | Seredych M , Bandosz T J . Tobacco waste/industrial sludge based desulfurization adsorbents: effect of phase interactions during pyrolysis on surface activity[J]. Environmental Science & Technology, 2007, 41(10): 3715-3721. |
19 | Xie C D , Liu J Y , Xie W M , et al . Quantifying thermal decomposition regimes of textile dyeing sludge, pomelo peel, and their blends[J]. Renewable Energy, 2018, 122: 55-64. |
20 | Xie C D , Liu J Y , Zhang X C , et al . Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks[J]. Applied Energy, 2018, 212: 786-795. |
21 | 庄修政, 黄艳琴, 阴秀丽, 等 . 污泥水热处理制备清洁燃料的研究进展[J]. 化工进展, 2018, 37(1): 311-318. |
Zhuang X Z , Huang Y Q , Yin X L , et al . Research on clean solid fuel derived from sludge employing hydrothermal treatment[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 311-318. | |
22 | 庄修政, 宋艳培, 詹昊, 等 .水热污泥与煤在混燃过程中的协同效应特性研究[J]. 燃料化学学报, 2018, 46(12): 1437-1446. |
Zhuang X Z , Song Y P , Zhan H , et al . Synergistic effects in co-combusting of hydrochar derived from sewage sludge with different-rank coals[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1437-1446. | |
23 | Zornoza R , Moreno-Barriga E , Acosta J A , et al . Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments[J]. Chemosphere, 2016, 144: 122-130. |
24 | Barbanera M , Cotana F , Di-Matteo U . Co-combustion performance and kinetic study of solid digestate with gasification biochar[J]. Renewable Energy, 2018, 121: 597-605. |
25 | He C , Giannis A , Wang J Y . Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior[J]. Applied Energy, 2013, 111: 257-266. |
26 | He C , Wang K , Yang Y H , et al . Utilization of sewage-sludge-derived hydrochars toward efficient cocombustion with different-rank coals: effects of subcritical water conversion and blending scenarios[J]. Energy & Fuels, 2014, 28(9): 6140-6150. |
27 | Gil M V , Oulego P , Casal M D , et al . Mechanical durability and combustion characteristics of pellets from biomass blends[J]. Bioresource Technology, 2010, 101: 8859-8867. |
28 | Mursito A T , Hirajima T , Sasaki K . Upgrading and dewatering of raw tropical peat by hydrothermal treatment[J]. Fuel, 2010, 89(3): 635-641. |
29 | Peng C , Zhai Y B , Zhu Y , et al . Production of char from sewage sludge employing hydrothermal carbonization: char properties, combustion behavior and thermal characteristics[J]. Fuel, 2016, 176: 110-118. |
30 | Nonaka M , Hirajima T , Sasaki K . Upgrading of low rank coal and woody biomass mixture by hydrothermal treatment[J]. Fuel, 2011, 90(8): 2578-2584. |
[1] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[2] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[3] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[4] | Yuhao CHEN, Xiaoping CHEN, Jiliang MA, Cai LIANG. Gaseous pollutants emissions from rotary kiln combustion of municipal sewage sludge [J]. CIESC Journal, 2023, 74(5): 2170-2178. |
[5] | Jiahui SHEN, Kanhong WANG, Dawei YU, Dazhou HU, Yuansong WEI. Free ammonia conditioning promoted micro-molecule organics release and methanogenesis of thickened sludge [J]. CIESC Journal, 2022, 73(9): 4147-4155. |
[6] | Xinyi LUO, Chao FENG, Jing LIU, Yu QIAO. Phosphorus recovery from products of sewage sludge via different thermal treatment processes [J]. CIESC Journal, 2022, 73(9): 4034-4044. |
[7] | Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol [J]. CIESC Journal, 2022, 73(7): 2996-3006. |
[8] | Chaoyu SONG, Yaxuan XIONG, Jinhua ZHANG, Yuhe JIN, Chenhua YAO, Huixiang WANG, Yulong DING. Preparation and performance study of incinerated slag based shape-stable phase change composites [J]. CIESC Journal, 2022, 73(5): 2279-2287. |
[9] | Guanyi CHEN, Tujun TONG, Rui LI, Yanshan WANG, Beibei YAN, Ning LI, Li'an HOU. Influence of pyrolysis time on sludge-derived biochar performance for peroxymonosulfate activation [J]. CIESC Journal, 2022, 73(5): 2111-2119. |
[10] | Xiaoyang YANG, Baofeng WANG, Xutao SONG, Fengling YANG, Fangqin CHENG. Migration of sulfur and nitrogen during co-hydrothermal carbonization process of sewage sludge and high-sulfur coal [J]. CIESC Journal, 2022, 73(11): 5211-5219. |
[11] | Li ZHANG, Jianhua WU, Shuhui CUI, Feng YAN, Hao SUN, Feiyue QIAN. Analysis of bacterial function in combined PN/A granular sludge and solid phase denitrification processes [J]. CIESC Journal, 2022, 73(11): 5128-5137. |
[12] | Shan CHENG, Rui LUO, Hong TIAN, Zhenqi WANG, Jingchun HUANG, Yu QIAO. Effect of hydrothermal carbonization temperature on transformation path of organic nitrogen in sludge [J]. CIESC Journal, 2022, 73(11): 5220-5229. |
[13] | Lanhe ZHANG, Lu WANG, Zimeng LI, Hong TANG, Jingbo GUO, Yanping JIA, Mingshuang ZHANG. The treatment of anionic surfactant wastewater using electrode ultrafiltration membrane bioreactor [J]. CIESC Journal, 2022, 73(10): 4679-4691. |
[14] | Guanyu WANG, Lingjun ZHU, Jinsong ZHOU, Shurong WANG. Study on pyrolysis characteristics of paper mill solid waste based on synergistic effects of its components [J]. CIESC Journal, 2022, 73(1): 393-401. |
[15] | Li YANG, Yundong SUN, Yong JIAO, Ye YANG, Jianbiao CHEN, Chuanhua LIAO. Synergistic catalytic mechanism of ash in pyrolysis and gasification of textile dyeing sludge [J]. CIESC Journal, 2021, 72(9): 4718-4729. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||