CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 4903-4917.DOI: 10.11949/0438-1157.20200668
• Celebration Column for School of Chemistry and Chemical Engineering, Nanjing University • Previous Articles Next Articles
Changyou YU1(),Bingbing HE2,Yanbo LIU1,Baohong HOU1,Mingyang CHEN1(),Junbo GONG1,3()
Received:
2020-05-29
Revised:
2020-07-05
Online:
2020-11-05
Published:
2020-11-05
Contact:
Mingyang CHEN,Junbo GONG
余畅游1(),何兵兵2,刘岩博1,侯宝红1,陈明洋1(),龚俊波1,3()
通讯作者:
陈明洋,龚俊波
作者简介:
余畅游(1996—),男,硕士研究生,基金资助:
CLC Number:
Changyou YU,Bingbing HE,Yanbo LIU,Baohong HOU,Mingyang CHEN,Junbo GONG. Granulation of spherical particles by crystal agglomeration method[J]. CIESC Journal, 2020, 71(11): 4903-4917.
余畅游,何兵兵,刘岩博,侯宝红,陈明洋,龚俊波. 制造球形粒子的晶体聚结方法[J]. 化工学报, 2020, 71(11): 4903-4917.
1 | Iveson S M, Litster J D, Hapgood K, et al. Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review[J]. Powder Technology, 2001, 117(1): 3-39. |
2 | Usha A N, Mutalik S, Reddy M S, et al. Preparation and, in vitro, preclinical and clinical studies of aceclofenac spherical agglomerates[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70(2): 674-683. |
3 | Varshosaz J, Tavakoli N, Salamat F A. Enhanced dissolution rate of simvastatin using spherical crystallization technique[J]. Pharmaceutical Development and Technology, 2011, 16(5): 529-535. |
4 | Lasagabaster A, Martín C, Goñi M M. Preparation of spherically agglomerated crystals of the 3,5-diglucoside of cyanidin (cyanin)[J]. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental and Clean Technology, 1994, 60(4): 397-403. |
5 | Sadowski Z. Selective spherical agglomeration of fine salt-type mineral particles in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 96(3): 277-285. |
6 | Huang A Y, Berg J C. Gelation of liquid bridges in spherical agglomeration[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 215(1/2/3): 241-252. |
7 | Gao H, Yao X L, Huang M, et al. The facile fabrication and formation mechanism of self-assembled spherical 3,3'-diamino-4,4'-azoxyfurazan (DAAF) hierarchical structures[J]. CrystEngComm, 2019, 21(41): 6136-6144. |
8 | Chen M, Liu X, Yu C, et al. Strategy of selecting solvent systems for spherical agglomeration by the Lifshitz-van der Waals acid-base approach[J]. Chemical Engineering Science, 2020, 220: 1-14. |
9 | Stock D I. Micro-spherical aggregation of barium sulphate[J]. Nature, 1952, 170(4323): 423-423. |
10 | Smith H M, Puddington I E. Spherical agglomeration of barium sulphate[J]. Canadian Journal of Chemistry, 1960, 38(10): 1911-1916. |
11 | Katta J, Rasmuson Å C. Spherical crystallization of benzoic acid[J]. International Journal of Pharmaceutics, 2008, 348(1/2): 61-69. |
12 | Thati J, Rasmuson Å C. On the mechanisms of formation of spherical agglomerates[J]. European Journal of Pharmaceutical Sciences, 2011, 42(4): 365-379. |
13 | Thati J, Rasmuson Å C. Particle engineering of benzoic acid by spherical agglomeration[J]. European Journal of Pharmaceutical Sciences, 2012, 45(5): 657-667. |
14 | Orlewski P M, Ahn B, Mazzotti M. Tuning the particle sizes in spherical agglomeration[J]. Crystal Growth & Design, 2018, 18(10): 6257-6265. |
15 | Pitt K, Peña R, Tew J D, et al. Particle design via spherical agglomeration: a critical review of controlling parameters, rate processes and modelling[J]. Powder Technology, 2018, 326: 327-343. |
16 | Cui F, Kawashima Y, Takeuchi H, et al. Preparation of controlled releasing acrylic polymer microspheres of acebutolol hydrochloride and those powder coated microspheres with sodium alginate in a polymeric spherical crystallization system[J]. Chemical and Pharmaceutical Bulletin, 1996, 44(4): 837-842. |
17 | Kawashima Y, Okumura M, Takenaka H. Spherical crystallization: direct spherical agglomeration of salicylic acid crystals during crystallization[J]. Science, 1982, 216(4550): 1127-1128. |
18 | Imai M, Kamiya K, Hino T, et al. Development of agglomerated crystals of ascorbic acid for airect tableting by spherical crystallization technique and evaluation of their compactibilities[J]. Journal of the Society of Powder Technology, Japan, 2001, 38(3): 160-168. |
19 | Peña R, Nagy Z K. Process intensification through continuous spherical crystallization using a two-stage mixed suspension mixed product removal (MSMPR) system[J]. Crystal Growth & Design, 2015, 15(9): 4225-4236. |
20 | Peña R, Oliva J A, Burcham C L, et al. Process intensification through continuous spherical crystallization using an oscillatory flow baffled crystallizer[J]. Crystal Growth & Design, 2017, 17(9): 4776-4784. |
21 | Peña R, Burcham C L, Jarmer D J, et al. Modeling and optimization of spherical agglomeration in suspension through a coupled population balance model[J]. Chemical Engineering Science, 2017, 167: 66-77. |
22 | Takasaki H, Yonemochi E, Ito M, et al. The importance of binder moisture content in metformin HCl high-dose formulations prepared by moist aqueous granulation (MAG)[J]. Results in Pharma Sciences, 2015, 5: 1-7. |
23 | Faure A, York P, Rowe R C. Process control and scale-up of pharmaceutical wet granulation processes: a review[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2001, 52(3): 269-277. |
24 | Passerini N, Calogerà G, Albertini B, et al. Melt granulation of pharmaceutical powders: a comparison of high-shear mixer and fluidised bed processes[J]. International Journal of Pharmaceutics, 2010, 391(1): 177-186. |
25 | Gao J Z H, Jain A, Motheram R, et al. Fluid bed granulation of a poorly water soluble, low density, micronized drug: comparison with high shear granulation[J]. International Journal of Pharmaceutics, 2002, 237(1/2): 1-14. |
26 | Morin G, Briens L. A comparison of granules produced by high-shear and fluidized-bed granulation methods[J]. AAPS PharmSciTech, 2014, 15(4): 1039-1048. |
27 | Erdemir D, Rosenbaum T, Chang S Y, et al. Novel co-processing methodology to enable direct compression of a poorly compressible, highly water-soluble active pharmaceutical ingredient for controlled release[J]. Organic Process Research & Development, 2018, 22(10): 1383-1392. |
28 | Bauer-Brandl A. Polymorphic transitions of cimetidine during manufacture of solid dosage forms[J]. International Journal of Pharmaceutics, 1996, 140(2): 195-206. |
29 | Wong M W Y, Mitchell A G. Physicochemical characterization of a phase change produced during the wet granulation of chlorpromazine hydrochloride and its effects on tableting[J]. International Journal of Pharmaceutics, 1992, 88(1/2/3): 261-273. |
30 | Rieck C, Hoffmann T, Bück A, et al. Influence of drying conditions on layer porosity in fluidized bed spray granulation[J]. Powder Technology, 2015, 272: 120-131. |
31 | Leon R A L, Wan W Y, Badruddoza A Z M, et al. Simultaneous spherical crystallization and co-formulation of drug (s) and excipient from microfluidic double emulsions[J]. Crystal Growth & Design, 2014, 14(1): 140-146. |
32 | Wurster D E. Air-suspension technique of coating drug particles: a preliminary report[J]. Journal of the American Pharmaceutical Association, 1959, 48(8): 451-454. |
33 | Scott M W, Lieberman H A, Rankell A S, et al. Continuous production of tablet granulations in a fluidized bed (I): Theory and design considerations[J]. Journal of Pharmaceutical Sciences, 1964, 53(3): 314-320. |
34 | Pagire S K, Korde S A, Whiteside B R, et al. Spherical crystallization of carbamazepine/saccharin co-crystals: selective agglomeration and purification through surface interactions[J]. Crystal Growth & Design, 2013, 13(10): 4162-4167. |
35 | Jin S, Chen M, Li Z, et al. Design and mechanism of the formation of spherical KCl particles using cooling crystallization without additives[J]. Powder Technology, 2018, 329: 455-462. |
36 | Barrett P J. The shape of rock particles, a critical review[J]. Sedimentology, 1980, 27(3): 291-303. |
37 | Wu S, Chen M, Rohani S, et al. Solvent-mediated nonoriented self-aggregation transformation: a case study of gabapentin[J]. Crystal Growth & Design, 2017, 17(8): 4207-4216. |
38 | Ueda M, Nakamura Y, Makita H, et al. Particle design of enoxacin by spherical crystallizaion technique(Ⅱ):Characteristics of agglomerated crystals[J]. Chemical & Pharmaceutical Bulletin, 1991, 39(5): 1277-1281. |
39 | Pons M N, Vivier H, Dodds J. Particle shape characterization using morphological descriptors[J]. Particle & Particle Systems Characterization, 1997, 14(6): 272-277. |
40 | Gao C F, Xiao Z Y, Zou H P, et al. Characterization of spherical AlSi10Mg powder produced by double-nozzle gas atomization using different parameters[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 374-384. |
41 | Khan K A, Sarfaraz M D, Doddayya H. Design and evaluation of aceclofenac fast dissolving tablets prepared by crystallo-co-agglomeration technique[J]. International Journal of Pharmacology and Pharmaceutical Sciences, 2011, 3(4): 116-123. |
42 | Pawar A P, Paradkar A R, Kadam S S, et al. Crystallo-co-agglomeration: a novel technique to obtain ibuprofen-paracetamol agglomerates[J]. AAPS PharmSciTech, 2004, 5(3): 57-64. |
43 | Shah D, Sorathiab K. Design and evaluation of sustained release spherical agglomerates of fluvastatin sodium by crystallo-co-agglomeration[J]. Journal of Applied Pharmaceutical Science, 2017, 7(9): 99-108. |
44 | Zhong C, Chu C C. On the origin of amorphous cores in biomimetic CaCO3 spherulites new insights into spherulitic crystallization[J]. Crystal Growth & Design, 2010, 10(12): 5043-5049. |
45 | Jitkar S, Thipparaboina R, Chavan R B, et al. Spherical agglomeration of platy crystals: curious case of etodolac[J]. Crystal Growth & Design, 2016, 16(7): 4034-4042. |
46 | Jarosz P J, Parrott E L. Comparison of granule strength and tablet tensile strength[J]. Journal of Pharmaceutical Sciences, 1983, 72(5): 530-535. |
47 | Garala K C, Patel J M, Dhingani A P, et al. Quality by design (QbD) approach for developing agglomerates containing racecadotril and loperamide hydrochloride by crystallo-co-agglomeration[J]. Powder Technology, 2013, 247: 128-146. |
48 | Raval M K, Patel J M, Parikh R K, et al. Studies on influence of polymers and excipients on crystallization behavior of metformin HCl to improve the manufacturability[J]. Particulate Science and Technology, 2014, 32(5): 431-444. |
49 | Heckel R W. Density-pressure relations in powder compaction[J]. Transactions of the Metallurgical Society of AIME, 1961, 221: 671-675. |
50 | Chatterjee A, Gupta M M, Shrivastava B, et al. Crystallo-co-agglomeration of valsartan for improved solubility and powder flowability[J]. Asian Journal of Pharmaceutics, 2018, 12(3): 182-195. |
51 | Chen M, Du S, Zhang T, et al. Spherical crystallization and the mechanism of clopidogrel hydrogen sulfate[J]. Chemical Engineering & Technology, 2018, 41(6): 1259-1265. |
52 | Patil A, Pore Y, Gavhane Y, et al. Spherical crystallization of ezetimibe for improvement in physicochemical and micromeritic properties[J]. Journal of Pharmaceutical Investigation, 2014, 44(3): 213-224. |
53 | Raval M K, Vaghela P D, Vachhani A N, et al. Role of excipients in the crystallization of albendazole[J]. Advanced Powder Technology, 2015, 26(4): 1102-1115. |
54 | Zhou X, Zhang Q, Xu R, et al. A novel spherulitic self-assembly strategy for organic explosives: modifying the hydrogen bonds by polymeric additives in emulsion crystallization[J]. Crystal Growth & Design, 2018, 18(4): 2417-2423. |
55 | Gao Y, Guan Y, Yang L, et al. Preparation of roxithromycin-polymeric microspheres by the emulsion solvent diffusion method for taste masking[J]. International Journal of Pharmaceutics, 2006, 318(1/2): 62-69. |
56 | Maghsoodi M, Taghizadeh O, Martin G P, et al. Particle design of naproxen-disintegrant agglomerates for direct compression by a crystallo-co-agglomeration technique[J]. International Journal of Pharmaceutics, 2008, 351(1/2): 45-54. |
57 | Sarath C C, Thomas T, Kv V, et al. Crystallo-co-agglomeration: an effective tool to change the powder characteristics of indomethacin IP[J]. International Journal of Pharmacy and Pharmaceutical Research, 2016, 7(4): 197-207. |
58 | Blandin A F, Mangin D, Subero-Couroyer C, et al. Modelling of agglomeration in suspension: application to salicylic acid microparticles[J]. Powder Technology, 2005, 156(1): 19-33. |
59 | Zhang H, Chen Y, Wang J, et al. Investigation on the spherical crystallization process of cefotaxime sodium[J]. Industrial & Engineering Chemistry Research, 2010, 49(3): 1402-1411. |
60 | Zhang H, Wang J, Chen Y, et al. Solubility of sodium cefotaxime in different solvents[J]. Journal of Chemical & Engineering Data, 2007, 52(3): 982-985. |
61 | Peña R, Jarmer D J, Burcham C L, et al. Further understanding of agglomeration mechanisms in spherical crystallization systems: benzoic acid case study[J]. Crystal Growth & Design, 2019, 19(3): 1668-1679. |
62 | Blandin A F, Mangin D, Rivoire A, et al. Agglomeration in suspension of salicylic acid fine particles: influence of some process parameters on kinetics and agglomerate final size[J]. Powder Technology, 2003, 130(1/2/3): 316-323. |
63 | Bausch A, Leuenberger H. Wet spherical agglomeration of proteins as a new method to prepare parenteral fast soluble dosage forms[J]. International Journal of Pharmaceutics, 1994, 101(1): 63-70. |
64 | Kawashima Y, Cui F, Takeuchi H, et al. Parameters determining the agglomeration behaviour and the micromeritic properties of spherically agglomerated crystals prepared by the spherical crystallization technique with miscible solvent systems[J]. International Journal of Pharmaceutics, 1995, 119(2): 139-147. |
65 | Nagy Z K, Fevotte G, Kramer H, et al. Recent advances in the monitoring, modelling and control of crystallization systems[J]. Chemical Engineering Research and Design, 2013, 91(10): 1903-1922. |
66 | Ramisetty K A, Pandit A B, Gogate P R. Ultrasound-assisted antisolvent crystallization of benzoic acid: effect of process variables supported by theoretical simulations[J]. Industrial & Engineering Chemistry Research, 2013, 52(49): 17573-17582. |
67 | Subero-Couroyer C, Mangin D, Rivoire A, et al. Agglomeration in suspension of salicylic acid fine particles: analysis of the wetting period and effect of the binder injection mode on the final agglomerate size[J]. Powder Technology, 2006, 161(2): 98-109. |
68 | Zauner R, Jones A G. Determination of nucleation, growth, agglomeration and disruption kinetics from experimental precipitation data: the calcium oxalate system[J]. Chemical Engineering Science, 2000, 55(19): 4219-4232. |
69 | Simon L L, Merz T, Dubuis S, et al. In-situ monitoring of pharmaceutical and specialty chemicals crystallization processes using endoscopy-stroboscopy and multivariate image analysis[J]. Chemical Engineering Research and Design, 2012, 90(11): 1847-1855. |
70 | 龚俊波, 陈明洋, 黄翠, 等. 面向清洁生产的制药结晶[J]. 化工学报, 2015, 66(9): 3271-3278. |
Gong J B, Chen M Y, Huang C, et al. Clean production of pharmaceutical crystallization[J]. CIESC Journal, 2015, 66(9): 3271-3278. | |
71 | Kalny M, Pittermannova A, Zadrazil A, et al. Continuous production of spherical multicrystals by extractive crystallization in a droplet based fluidic device[J]. Crystal Growth & Design, 2017, 17(7): 3700-3706. |
72 | Maleky F, Marangoni A G. Process development for continuous crystallization of fat under laminar shear[J]. Journal of Food Engineering, 2008, 89(4): 399-407. |
73 | Nguyen A T, Kim J M, Chang S M, et al. Taylor vortex effect on phase transformation of guanosine 5-monophosphate in drowning-out crystallization[J]. Industrial & Engineering Chemistry Research, 2010, 49(10): 4865-4872. |
74 | 朱明河, 张旭, 靳沙沙, 等. 球形和片状氯化钠晶习调控研究[J]. 化学工业与工程, 2018, 35(3): 55-61. |
Zhu M H, Zhang X, Jin S S, et al. Crystal habit regulation of spherical and plate-like sodium chloride [J]. Chemical Industry and Engineering, 2018,35(3): 55-61. | |
75 | Kadam S S, Mahadik K R, Paradkar A R. A process for making agglomerates for drug delivery systems: IN183481B[P]. 1997-02-14. |
76 | Yousef M A E, Vangala V R. Pharmaceutical cocrystals: molecules, crystals, formulations, medicines[J]. Crystal Growth & Design, 2019, 19(12): 7420-7438. |
77 | Tran P H L, Tran T T D. Dosage form designs for the controlled drug release of solid dispersions[J]. International Journal of Pharmaceutics, 2020, 581: 119274. |
78 | Jadhav N, Pawar A, Paradkar A. Design and evaluation of deformable talc agglomerates prepared by crystallo-co-agglomeration technique for generating heterogenous matrix[J]. AAPS PharmSciTech, 2007, 8(3): E61-E67. |
79 | Mahajan N M, Malghade A D, Dumore N G, et al. Design and development of crystallo-coagglomerates of ritonavir for the improvement of physicochemical properties[J]. Turkish Journal of Pharmaceutical Sciences, 2018, 15(3):248-255. |
80 | Sarfaraz M D, Khan K A, Doddayya H, et al. Particle design of aceclofenac-disintegrant agglomerates for direct compression by crystallo-co-agglomeration technique[J]. Asian Journal of Pharmacy and Technology, 2011, 1(2): 40-48. |
81 | Fan Y L, Cui F D, Yang M S, et al. Preparation of enteric microsphere of oleanolic acid dihemiphthalate sodium by salting-out action using spherical crystallization technique[J]. Acta Pharmaceutica Sinica, 2005, 40(3): 267-273. |
82 | Shi K, Jiang Y, Zhang M, et al. Tocopheryl succinate-based lipid nanospheres for paclitaxel delivery: preparation, characters, and in vitro release kinetics[J]. Drug Delivery, 2010, 17(1): 1-10. |
[1] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[2] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[3] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[4] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[5] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[6] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[7] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[8] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[9] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[10] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[11] | Hao ZHANG, Huibin XU, Jian GAO, Dihong LIU, Zehua ZHOU. Geldart-D wet particle tilt-fall behavior and its reinforcement [J]. CIESC Journal, 2023, 74(4): 1519-1527. |
[12] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[13] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[14] | Xuan ZHOU, Mengya LI, Jie SUN, Zhenkai CEN, Qiangsan LYU, Lishan ZHOU, Haitao WANG, Dandan HAN, Junbo GONG. The regulation mechanism of additives on the amino acid crystal growth [J]. CIESC Journal, 2023, 74(2): 500-510. |
[15] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1015
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 900
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||