CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 5246-5255.DOI: 10.11949/0438-1157.20200285
• Biochemical engineering and technology • Previous Articles Next Articles
Xinyi ZHANG1,2(),Rui XU1,2,Yuqi WANG1,2,Yu ZHANG1,2,Fei WANG1,2,Xun LI1,2()
Received:
2020-03-18
Revised:
2020-07-07
Online:
2020-11-05
Published:
2020-11-05
Contact:
Xun LI
张昕怡1,2(),许蕊1,2,王钰棋1,2,张瑜1,2,王飞1,2,李迅1,2()
通讯作者:
李迅
作者简介:
张昕怡(1996—),女,硕士研究生,基金资助:
CLC Number:
Xinyi ZHANG,Rui XU,Yuqi WANG,Yu ZHANG,Fei WANG,Xun LI. Purification and characterization of novel thermo-alkaline lipase and its application[J]. CIESC Journal, 2020, 71(11): 5246-5255.
张昕怡,许蕊,王钰棋,张瑜,王飞,李迅. 新型嗜热耐碱脂肪酶的纯化表征及应用[J]. 化工学报, 2020, 71(11): 5246-5255.
Add to citation manager EndNote|Ris|BibTeX
纯化步骤 | 总体积/ml | 总酶活/U | 比酶活/ (U/mg) | 回收率/% | 纯化倍数 |
---|---|---|---|---|---|
粗酶液 | 10 | 469.96 | 1.99 | 100 | 1 |
热处理 | 10 | 340.35 | 6.48 | 72.42 | 3.26 |
镍柱亲和层析 | 4 | 114.64 | 22.11 | 24.39 | 11.11 |
Table 1 The purification of recombinant lipase TlLipA
纯化步骤 | 总体积/ml | 总酶活/U | 比酶活/ (U/mg) | 回收率/% | 纯化倍数 |
---|---|---|---|---|---|
粗酶液 | 10 | 469.96 | 1.99 | 100 | 1 |
热处理 | 10 | 340.35 | 6.48 | 72.42 | 3.26 |
镍柱亲和层析 | 4 | 114.64 | 22.11 | 24.39 | 11.11 |
金属离子和化学试剂 | 相对酶活/% |
---|---|
control Fe3+ Co2+ Zn2+ Mn2+ Ca2+ K+ Mg2+ Na+ Ni2+ Cu2+ PMSF LAS Tween 80 AEO-7 EDTA SDS Triton X-100 | 100±3.15 11.71±2.49 90.84±1.72 9.73±1.34 113.24±3.04 81.24±7.04 90.27±4.60 108.55±7.11 88.76±5.46 87.63±3.68 69.31±6.50 86.39±3.46 72.62±4.37 8.19±2.16 16.36±2.73 15.90±2.61 2.28±1.44 61.15±1.07 |
Table 2 Effects of ions and reagents on the activity of the lipase
金属离子和化学试剂 | 相对酶活/% |
---|---|
control Fe3+ Co2+ Zn2+ Mn2+ Ca2+ K+ Mg2+ Na+ Ni2+ Cu2+ PMSF LAS Tween 80 AEO-7 EDTA SDS Triton X-100 | 100±3.15 11.71±2.49 90.84±1.72 9.73±1.34 113.24±3.04 81.24±7.04 90.27±4.60 108.55±7.11 88.76±5.46 87.63±3.68 69.31±6.50 86.39±3.46 72.62±4.37 8.19±2.16 16.36±2.73 15.90±2.61 2.28±1.44 61.15±1.07 |
脂肪酶来源 | 最适温度/℃ | 最适pH | Km/(mmol/L) | Vmax/(mmol/(L·min)) | 文献 |
---|---|---|---|---|---|
T. lipolytica(TlLipA) | 65 | 8 | 0.23 | 33.50 | 本文 |
G. thermodenitrificans AV-5 | 65 | 9 | 0.44 | 0.556 | [ |
T. Anoxybacillus flavithermus HBB 134 | 50 | 9 | 0.084 | 1.29 | [ |
Staphylococcus aureus | 40 | 8 | 1.57 | 3.25 | [ |
Thermotoga maritima | 70 | 7.5 | 8 | 2.50 | [ |
Geobacillus sp. | 65 | 8.5 | 14 | 17.86 | [ |
Streptomyces thermocarboxydus ME168 | 50 | 8 | 0.28 | 16.54 | [ |
Table 3 Comparison of kinetic parameters of various thermo-alkaline lipases
脂肪酶来源 | 最适温度/℃ | 最适pH | Km/(mmol/L) | Vmax/(mmol/(L·min)) | 文献 |
---|---|---|---|---|---|
T. lipolytica(TlLipA) | 65 | 8 | 0.23 | 33.50 | 本文 |
G. thermodenitrificans AV-5 | 65 | 9 | 0.44 | 0.556 | [ |
T. Anoxybacillus flavithermus HBB 134 | 50 | 9 | 0.084 | 1.29 | [ |
Staphylococcus aureus | 40 | 8 | 1.57 | 3.25 | [ |
Thermotoga maritima | 70 | 7.5 | 8 | 2.50 | [ |
Geobacillus sp. | 65 | 8.5 | 14 | 17.86 | [ |
Streptomyces thermocarboxydus ME168 | 50 | 8 | 0.28 | 16.54 | [ |
脂肪酶来源 | 反应 温度/℃ | 反应 时间/h | 醇油比 | 原料油 | 生物柴油 收率/% | 文献 |
---|---|---|---|---|---|---|
T. lipolytica(TlLipA) | 55 | 48 | 4∶1 | 大豆油 | 91.75 | 本文 |
G. thermodenitrificans AV-5 | 65 | 48 | 3∶1 | 废餐饮油 | 76 | [ |
G.thermodenitrificans AV-5 | 65 | 48 | 3∶1 | 椰子油 | 45.5 | [ |
Bacillus sp. | 55 | 40 | 3∶1 | Oedogonium sp. oil. | 76 | [ |
Idiomarina sp. W33 | 60 | 60 | 4∶1 | 麻风树油 | 84 | [ |
Table 4 Comparison of preparation of biodiesel using various thermo-alkaline lipases
脂肪酶来源 | 反应 温度/℃ | 反应 时间/h | 醇油比 | 原料油 | 生物柴油 收率/% | 文献 |
---|---|---|---|---|---|---|
T. lipolytica(TlLipA) | 55 | 48 | 4∶1 | 大豆油 | 91.75 | 本文 |
G. thermodenitrificans AV-5 | 65 | 48 | 3∶1 | 废餐饮油 | 76 | [ |
G.thermodenitrificans AV-5 | 65 | 48 | 3∶1 | 椰子油 | 45.5 | [ |
Bacillus sp. | 55 | 40 | 3∶1 | Oedogonium sp. oil. | 76 | [ |
Idiomarina sp. W33 | 60 | 60 | 4∶1 | 麻风树油 | 84 | [ |
1 | Jaeger K E, Eggert T. Lipases for biotechnology[J]. Current Opinion Biotechnology, 2002, 13(4): 390-397. |
2 | Joseph B, Ramteke P W, Thomas G. Cold active microbial lipases: some hot issues and recent developments[J]. Biotechnology Advances, 2008, 26(5): 457-470. |
3 | Gupta R, Gupta N, Rathi P. Bacterial lipases: an overview of production, purification and biochemical properties[J]. Applied Microbiology and Biotechnology, 2004, 64(6): 763-781. |
4 | 武海棠, 许康力, 杨芳霞, 等. 萃取-酯交换耦合法制备生物柴油过程催化剂应用研究进展[J]. 林业工程学报, 2017, 2(2): 95-100. |
Wu H T, Xu K L, Yang F X, et al. Recent development in application of catalyst to biodiesel production by coupling extraction and transesterification[J]. Journal of Forestry Engineering, 2017, 2(2): 95-100. | |
5 | 黄璜, 李宗军, 王远亮, 等. 各类微生物脂肪酶酶学性质及应用的研究进展[J]. 粮油食品科技, 2014, 22(1): 109-118. |
Huang H, Li Z J, Wang Y L, et al. Progress in enzymatic properties of microbial lipase and applications[J]. Science and Technology of Cereals, Oils and Foods, 2014, 22(1): 109-118. | |
6 | 魏涛, 杨昆鹏, 郏未未, 等. Thermoanaerobacter sp.X514嗜热脂肪酶LipTX的异源表达与酶学性质研究[J]. 现代食品科技, 2016, 32(11): 91-97. |
Wei T, Yang K P, Jia W W, et al. Heterologous expression and enzymatic properties of lipase LipTX from thermophilic bacterium Thermoanaerobacter sp. strain X514[J]. Modern Food Science and Technology, 2016, 32(11): 91-97. | |
7 | 刘弘忍, 王亮亮, 何琦阳, 等. 南极嗜冷杆菌脂肪酶的原核可溶性表达优化及酶学性能表征[J].林业工程学报, 2016, 1(5): 71-77. |
Liu H R, Wang L L, He Q Y, et al. Optimized soluble expression and characterization of a cold-adapted lipase from psychrotrophic bacterium in Escherichia coli[J]. Journal of Forestry Engineering, 2016, 1(5): 71-77. | |
8 | 王柏婧, 冯雁, 王师钰, 等. 嗜热酶的特性及其应用[J]. 微生物学报, 2002, 2(2): 259-262. |
Wang B J, Feng Y, Wang S Y, et al. Characteristics and application of thermophilic enzymes[J]. Acta Microbiologica Sinica, 2002, 2(2): 259-262. | |
9 | Bora L, Gohain D, Das R. Recent advances in production and biotechnological applications of thermostable and alkaline bacterial lipases[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(11): 1959-1970. |
10 | 何祯祥, 王伟. 中国能源林业研发现状与发展策略[J]. 林业科技开发, 2006, (4): 8-11. |
He Z X, Wang W. Energy forest in China: progress and prospects[J].China Forestry Science and Technology, 2006, (4): 8-11. | |
11 | Robles-Medina A, González-Moreno P A, Esteban-Cerdán L, et al. Biocatalysis: towards ever greener biodiesel production[J]. Biotechnology Advances, 2009, 27(4): 398-408. |
12 | Christopher L P, Zambare V P, Zambare A, et al. A thermo-alkaline lipase from a new thermophile Geobacillus thermodenitrificans AV-5 with potential application in biodiesel production[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(11): 2007-2016. |
13 | Sivaramakrishnan R, Muthukumar K. Isolation of thermo-stable and solvent-tolerant Bacillus sp. lipase for the production of biodiesel[J]. Applied Biochemistry & Biotechnology, 2012, 166(4): 1095-1111. |
14 | Green M R, Sambrook J. Molecular Cloning: a Laboratory Manual[M]. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2012. |
15 | 王月皎, 夏乾竣, 周佩, 等. 解糖热纤维菌木糖苷酶的分离纯化及其酶学性质[J]. 化工进展, 2017, 36(3): 1041-1046. |
Wang Y J, Xia Q J, Zhou P, et al. Purification and characterization of a thermostable β-xylosidase from Caldicellulosiruptor saccharolyticus[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 1041-1046. | |
16 | Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1): 248-254. |
17 | Bakir Z B, Metin K. Purification and characterization of an alkali-thermostable lipase from thermophilic Anoxybacillus flavithermus HBB 134[J]. Journal of Microbiology Biotechnology, 2016, 26(6): 1087-1097. |
18 | Snellman E A, Sullivan E R, Colwell R R. Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1[J]. European Journal of Biochemistry, 2002, 269(23): 5771-5779. |
19 | Kumar S, Kikon K, Upadhyay A, et al. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3[J]. Protein Expression & Purification, 2005, 41(1): 38-44. |
20 | Sifour M, Saeed H M, Zaghloul T I, et al. Purification and properties of a lipase from thermophilic Geobacillus stearothermophilus strain-5[J]. International Journal of Biological Chemistry, 2010, 4(4): 203-212. |
21 | McPhillips K, Waters D M, Parlet C, et al. Purification and characterisation of a β-1,4-xylanase from Remersoniathermophila CBS 540.69 and its application in bread making[J]. Applied Biochemistry and Biotechnology, 2014, 172(4): 1747-1762. |
22 | Zheng H. Isolation, purification, and characterization of a thermostable xylanase from a novel strain, Paenibacillus campinasensis G1-1[J]. Journal of Microbiology and Biotechnology, 2012, 22(7): 930-938. |
23 | 唐庆芸, 王永华. 表面活性剂对T1脂肪酶活力的影响[J]. 现代食品科技, 2017, 33(3): 185-189. |
Tang Q Y, Wang Y H.Effect of surfactants on T1 lipase activity[J]. Modern Food Science and Technology, 2017, 33(3): 185-189. | |
24 | Fojan P, Jonson P H, Petersen M T N, et al. What distinguishes an esterase from a lipase: a novel structural approach[J]. Biochimie, 2000, 82(11): 1033-1041. |
25 | Gaur R, Gupta A, Khare S K. Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA[J]. Process Biochemistry, 2008, 43(10): 1040-1046. |
26 | Lesuisse E, Schanck K, Colson C. Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme[J]. European Journal of Biochemistry, 2010, 216(1): 155-160. |
27 | Sarkar P, Yamasaki S, Basak S, et al. Purification and characterization of a new alkali-thermostable lipase from Staphylococcus aureus isolated from Arachis hypogaea rhizosphere[J]. Process Biochemistry, 2012, 47(5): 858-866. |
28 | Tian R, Chen H Y, Ni Z, et al. Expression and characterization of a novel thermo-alkalistable lipase from hyperthermophilic bacterium Thermotoga maritima[J]. Applied Biochemistry & Biotechnology, 2015, 176(5): 1482-1497. |
29 | Akshita M, Rakesh K, Reena G. Isolation of lipase producing thermophilic bacteria: optimization of production and reaction conditions for lipase from Geobacillus sp.[J]. Acta Microbiologica Et Immunologica Hungarica, 2012, 59(4): 435-50. |
30 | Aran H K, Prasertsan P, Zimmermann W, et al. Sugar ester synthesis by thermostable lipase from Streptomyces thermocarboxydus ME168[J]. Applied Biochemistry & Biotechnology, 2012, 166(8): 1969-1982. |
31 | Chen H C, Ju H Y, Wu T T, et al. Research article continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study[J]. Journal of Biomedicine & Biotechnology, 2011, 6(1): 137-143. |
32 | Azócar L, Navia R, Beroiz L, et al. Enzymatic biodiesel production kinetics using co-solvent and an anhydrous medium: a strategy to improve lipase performance in a semi-continuous reactor[J]. New Biotechnology, 2014, 31(5): 422-429. |
33 | Du W, Xu Y, Liu D, et al. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors[J]. Journal of Molecular Catalysis B Enzymatic, 2004, 30(3/4): 125-129. |
34 | Zheng Y, Quan J, Ning X, et al. Lipase-catalyzed transesterification of soybean oil for biodiesel production in tert-amyl alcohol[J]. World Journal of Microbiology & Biotechnology, 2009, 25(1): 41-46. |
35 | 李相, 刘涛, 杨江科. 响应面法优化洋葱伯克霍尔德菌固定化脂肪酶催化合成生物柴油工艺[J]. 北京化工大学学报(自然科学版), 2009, 36(5): 80-85. |
Li X, Liu T, Yang J K. Optimization of the production of biodiesel catalyzed by immobilized lipase from Burkholderia cepacia using a response surface method[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2009, 36(5): 80-85. | |
36 | Li X, Qian P, Wu S G, et al. Characterization of an organic solvent-tolerant lipase from Idiomarina sp. W33 and its application for biodiesel production using Jatropha oil[J]. Extremophiles, 2014, 18(1): 171-178. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[3] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[4] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[5] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[6] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
[7] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[8] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[9] | Shaojie AN, Hongfeng XU, Si LI, Yuanhang XU, Jiaxi LI. Construction of pH sensitive artificial glutathione peroxidase based on the formation and dissociation of molecular machine [J]. CIESC Journal, 2022, 73(8): 3669-3678. |
[10] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[11] | Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol [J]. CIESC Journal, 2022, 73(7): 2996-3006. |
[12] | Jiachen SUN, Wentao SUN, Hui SUN, Bo LYU, Chun LI. Licorice flavone synthase Ⅱ catalyzes liquiritigenin to specifically synthesize 7,4′-dihydroxyflavone [J]. CIESC Journal, 2022, 73(7): 3202-3211. |
[13] | Jiaren ZHANG, Haichao LIU. Phase equilibrium of transesterification reaction system between soybean oil and methanol [J]. CIESC Journal, 2022, 73(5): 1920-1929. |
[14] | Lin WANG, Qian FU, Shuai XIAO, Zhuo LI, Jun LI, Liang ZHANG, Xun ZHU, Qiang LIAO. High-efficient visible light responsive microbial photoelectrochemical system for CO2 reduction to CH4 [J]. CIESC Journal, 2022, 73(2): 887-893. |
[15] | Junyi LUO, Shiliang WU, Rui XIAO. Study on combustion characteristics of cycloalkanes mixed with aviation kerosene [J]. CIESC Journal, 2022, 73(2): 847-856. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||