1 |
Yin J, Ding Z, Lei D, et al. Zn-substituted CoCO3 embedded in carbon nanotubes network as high performance anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 712: 605-612.
|
2 |
Wang L, Tang W, Jing Y, et al. Do transition metal carbonates have greater lithium storage capability than oxides? A case study of monodisperse CoCO3 and CoO microspindles[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12346-12352.
|
3 |
Ding Z, Yao B, Feng J, et al. Enhanced rate performance and cycling stability of a CoCO3–polypyrrole composite for lithium ion battery anodes[J]. Journal of Materials Chemistry A, 2013, 1(37): 11200-11209
|
4 |
Mirhashemihaghighi S, León B, Pérez V C, et al. Lithium storage mechanisms and effect of partial cobalt substitution in manganese carbonate electrodes[J]. Inorganic Chemistry, 2012, 51(10): 5554-5560.
|
5 |
Giri A K, Pal P, Ananthakumar R, et al. 3D hierarchically assembled porous wrinkled-paper-like structure of ZnCo2O4 and Co-ZnO@C as anode materials for lithium-ion batteries [J].Crystal Growth & Design, 2014, 14(7): 3352-3359.
|
6 |
Liang K, Cheang T Y, Wen T, et al. Facile preparation of porous Mn2SnO4/Sn/C composite cubes as high performance anode material for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2016, 120(7): 3669-3676
|
7 |
Qin Z, Hong B, Duan B, et al. Tributyl borate as a novel electrolyte additive to improve high voltage stability of lithium cobalt oxide in carbonate-based electrolyte[J]. Electrochimica Acta, 2018, 276: 412-416.
|
8 |
Tarascon J, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414: 359-367.
|
9 |
Ishikawa M, Tanaka H, Kawai T. Preparation of highly conductive Mn-doped Fe3O4 thin films with spin polarization at room temperature using a pulsed-laser deposition technique[J]. Applied Physics Letters, 2005, 86(22): 222504.
|
10 |
Courtel M F, Duncan H, Abu-Lebdeh Y, et al. High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A= Co, Ni, and Zn) [J]. J. Mater. Chem., 2011, 21: 10206-10218.
|
11 |
Liu B, Zhang J, Wang X, et al. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries[J]. Nano Letters, 2012, 12(6): 3005-3011
|
12 |
Wang H, Zhu Y, Yuan C, et al. Cobalt-phthalocyanine-derived ultrafine Co3O4 nanoparticles as high-performance anode materials for lithium ion batteries[J]. Applied Surface Science, 2017, 414: 398-404.
|
13 |
Jin R, Ma Y, Sun Y, et al. Manganese cobalt oxide (MnCo2O4) hollow spheres as high capacity anode materials for lithium‐ion batteries[J]. Energy Technology, 2017, 5(2): 293-299.
|
14 |
Sharma Y, Sharma N, Subba R G V, et al. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries[J]. Advanced Functional Materials, 2007, 17(15): 2855-2861.
|
15 |
Lee C W, Seo S D, Kim D W, et al. Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes[J]. Nano Research, 2013, 6(5): 348-355.
|
16 |
Sharma Y, Sharma N, Rao G V S, et al. Nano-phase (Cd1/3Zn1/3Co1/3) CO3: a high capacity anode material for Li-ion batteries//meeting abstracts [J].The Electrochemical Society, 2008 (4): 421-421.
|
17 |
Liu L, Mou L, Yu J, et al. Urchin-like CoO–C micro/nano hierarchical structures as high performance anode materials for Li-ion batteries[J]. RSC Advances, 2017, 7(5): 2637-2643.
|
18 |
Han X, Han X, Zhan W, et al. Preparation of 3D hierarchical porous Co3O4 nanostructures with enhanced performance in lithium-ion batteries[J]. RSC advances, 2018, 8(6): 3218-3224.
|
19 |
Huang G, Zhang F, Du X, et al. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries[J]. ACS Nano, 2015, 9(2): 1592-1599.
|
20 |
Zhang R, Zhang F, Feng J, et al. Green and facile synthesis of porous ZnCO3 as a novel anode material for advanced lithium-ion batteries[J]. Materials Letters, 2014, 118: 5-7.
|
21 |
Li T, Chen Z X, Cao Y L, et al. Transition-metal chlorides as conversion cathode materials for Li-ion batteries[J]. Electrochimica Acta, 2012, 68: 202-205.
|
22 |
Şahan H, Göktepe H, Yıldız S, et al. A novel and green synthesis of mixed phase CoO@ Co3O4@ C anode material for lithium ion batteries[J]. Ionics, 2019, 25(2): 447-455.
|
23 |
Zhao S, Wang Y, Liu R, et al. Full-molar-ratio synthesis and enhanced lithium storage properties of CoxFe1- xCO3 composites with an integrated lattice structure and an atomic-scale synergistic effect[J]. Journal of Materials Chemistry A, 2015, 3(33): 17181-17189.
|
24 |
Arkhangel'skaya Z P, Ivanova R P, Kas' yan T B, et al. Effect of electrolyte composition on the performance of electrodes in nickel-zinc batteries[J]. Russian Journal of Applied Chemistry, 2001, 74(9): 1479-1484.
|
25 |
白晓波, 赵东江, 马松艳. 利用废旧锌锰电池制取盐和氧化锌的研究[J]. 应用化工, 2007, 36(8): 839-841.
|
|
Bai X B, Zhao D J, Ma S Y. Study on producing zinc salts and zinc oxide using the wasted Zn-Mn battery[J]. Applied Chemical Industry, 2007, 36(8): 839-841.
|
26 |
Liu Q, Su X, Lei D, et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping[J]. Nature Energy, 2018, 3(11): 936.
|
27 |
Yang Y, Huang G Y, Sun H, et al. Preparation and electrochemical properties of mesoporous NiCo2O4 double-hemisphere used as anode for lithium-ion battery[J]. Journal of Colloid and Interface Science, 2018, 529: 357-365.
|
28 |
Shi S, Zhang M, Deng T, et al. A facile strategy to construct binder-free flexible carbonate composite anode at low temperature with high performances for lithium-ion batteries[J]. Electrochimica Acta, 2017, 246: 1004-1015.
|
29 |
Zhang C, Xu D, Chen W, et al. Cockscomb-like Mn-doped MnxFe1- xCO3 as anode materials for a high-performance lithium-ion battery[J]. Journal of Applied Electrochemistry, 2017, 47(2): 157-166.
|
30 |
Zhang F, Zhang R, Liang G, et al. Carboxylated carbon nanotube anchored MnCO3 nanocomposites as anode materials for advanced lithium-ion batteries[J]. Materials Letters, 2013, 111:165-168.
|