CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5598-5606.DOI: 10.11949/0438-1157.20210822
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yuting SHI1,2(),Lin HUANGFU2,Changming LI3,Yue WANG4,Shiqiu GAO2,Xiaoguang SAN1,Zhennan HAN1,Jian YU2()
Received:
2021-06-21
Revised:
2021-08-30
Online:
2021-11-12
Published:
2021-11-05
Contact:
Jian YU
史玉婷1,2(),皇甫林2,李长明3,王月4,高士秋2,伞晓广1,韩振南1,余剑2()
通讯作者:
余剑
作者简介:
史玉婷(1995—),女,硕士研究生,基金资助:
CLC Number:
Yuting SHI, Lin HUANGFU, Changming LI, Yue WANG, Shiqiu GAO, Xiaoguang SAN, Zhennan HAN, Jian YU. Preparation and pilot-scale test of V2O5-MoO3/TiO2 catalytic filter bag[J]. CIESC Journal, 2021, 72(11): 5598-5606.
史玉婷, 皇甫林, 李长明, 王月, 高士秋, 伞晓广, 韩振南, 余剑. V2O5-MoO3/TiO2催化滤袋的制备及中试应用[J]. 化工学报, 2021, 72(11): 5598-5606.
样品 | Content/%(mass) | ||||
---|---|---|---|---|---|
C | O | F | S | V | |
新鲜-内侧 | 17.26 | 6.81 | 57.94 | 0.49 | 4.43 |
1500 h-外侧 | 13.17 | 30.37 | 20.33 | 12.59 | 1.13 |
1500 h-内侧 | 15.22 | 18.34 | 42.17 | 2.64 | 4.34 |
失活-外侧 | 12.37 | 47.59 | 8.20 | 31.18 | 0.66 |
失活-内侧 | 16.96 | 15.86 | 43.72 | 7.60 | 1.69 |
Table 1 The percentage of EDS elements in different catalytic filter bags
样品 | Content/%(mass) | ||||
---|---|---|---|---|---|
C | O | F | S | V | |
新鲜-内侧 | 17.26 | 6.81 | 57.94 | 0.49 | 4.43 |
1500 h-外侧 | 13.17 | 30.37 | 20.33 | 12.59 | 1.13 |
1500 h-内侧 | 15.22 | 18.34 | 42.17 | 2.64 | 4.34 |
失活-外侧 | 12.37 | 47.59 | 8.20 | 31.18 | 0.66 |
失活-内侧 | 16.96 | 15.86 | 43.72 | 7.60 | 1.69 |
1 | 宁汝亮, 刘霄龙, 朱廷钰. 低温SCR脱硝催化剂研究进展 [J].过程工程学报, 2019, 19(2): 223-234. |
Ning R L, Liu X L, Zhu T Y. Research progress of low-temperature SCR denitration catalysts[J]. The Chinese Journal of Process Engineering, 2019, 19(2): 223-234. | |
2 | Li J H, Chang H Z, Ma L, et al. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—a review[J]. Catalysis Today, 2011, 175(1): 147-156. |
3 | Liu J X, Zhao Z, Xu C M, et al. Structure, synthesis, and catalytic properties of nanosize cerium-zirconium-based solid solutions in environmental catalysis[J]. Chinese Journal of Catalysis, 2019, 40(10): 1438-1487. |
4 | 刘芳琪, 于敦喜, 吴建群, 等. 燃煤锅炉SCR对颗粒物排放特性影响[J]. 化工学报, 2018, 69(9): 4051-4057. |
Liu F Q, Yu D X, Wu J Q, et al. Effect of SCR on particulate matter emissions from a coal-fired boiler[J]. CIESC Journal, 2018, 69(9): 4051-4057. | |
5 | Pio F. Present status and perspectives in de-NOx SCR catalysis[J]. Applied Catalysis A: General, 2001, 222(1/2): 221-236. |
6 | 王响, 薛友祥, 程之强, 等. 除尘脱硝一体化陶瓷膜材料的研究[J]. 现代技术陶瓷, 2019, 40(5): 345-353. |
Wang X, Xue Y X, Cheng Z Q, et al. On the ceramic membrane material for SCR and dust removal[J]. Advanced Ceramics, 2019, 40(5): 345-353. | |
7 | Qiu Y, Liu B, Du J, et al. The monolithic cordierite supported V2O5-MoO3/TiO2 catalyst for NH3-SCR[J]. Chemical Engineering Journal, 2016, 294: 264-272. |
8 | Kwon B C, Kang D, Lee S W, et al. Synthesis of macro-porous de-NOx catalysts for poly-tetra-fluoro-ethylene membrane bag filter[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(8): 4537-4543. |
9 | Li W M, Liu H D, Chen Y F. Fabrication of MnOx-CeO2-based catalytic filters and their application in low-temperature selective catalytic reduction of NO with NH3[J]. Industrial & Engineering Chemistry Research, 2020, 59(28): 12657-12665. |
10 | 张先龙, 彭真, 刘鹏, 等. 基于PPS的锰基催化脱硝-除尘功能一体化滤料的制备及其低温SCR脱硝[J]. 功能材料, 2015, 46(S2): 160-164. |
Zhang X L, Peng Z, Liu P, et al. Preparation of PPS filter loaded with MnOx for dust elimination and de-NO by low-temperature SCR[J]. Journal of Functional Materials, 2015, 46(S2): 160-164. | |
11 | Liu J X, Wang L, Okejiri F, et al. Deep understanding of strong metal interface confinement: a journey of Pd/FeOx catalysts[J]. ACS Catalysis, 2020, 10(15): 8950-8959. |
12 | 陈雪红, 郑玉婴, 付彬彬, 等. 原位聚合MnO2/PoPD@PPS复合滤料及其NH3-SCR脱硝性能研究[J]. 燃料化学学报, 2017, 45(12): 1514-1521. |
Chen X H, Zheng Y Y, Fu B B, et al. Preparation of MnO2/PoPD@PPS functional composites for low-temperature NO reduction with NH3[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1514-1521. | |
13 | Yang B, Shen Y S, Su Y, et al. Removal characteristics of nitrogen oxides and particulates of a novel Mn-Ce-Nb-Ox/P84 catalytic filter applied for cement kiln[J]. Journal of Industrial and Engineering Chemistry, 2017, 50: 133-141. |
14 | Park Y O, Lee K W, Rhee Y W. Removal characteristics of nitrogen oxide of high temperature catalytic filters for simultaneous removal of fine particulate and NOx[J]. Journal of Industrial and Engineering Chemistry, 2009, 15(1): 36-39. |
15 | Gao F Y, Tang X L, Yi H H, et al. A review on selective catalytic reduction of NOx by NH3 over Mn-based catalysts at low temperatures: catalysts, mechanisms, kinetics and DFT calculations[J]. Catalysts, 2017, 7(7): 199. |
16 | Liu C, Shi J W, Gao C, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: a review[J]. Applied Catalysis A: General, 2016, 522: 54-69. |
17 | 郭凤, 余剑, Tuyet-Suong Tran, 等. 溶胶-凝胶原位合成钒钨钛催化剂及NH3-SCR性能[J]. 化工学报, 2017, 68(10): 3747-3754. |
Guo F, Yu J, Tuyet-Suong T, et al. In situ preparation of mesoporous V2O5-WO3/TiO2 catalyst by sol-gel method and its performance for NH3-SCR reaction[J]. CIESC Journal, 2017, 68(10): 3747-3754. | |
18 | Alemany L J, Lietti L, Ferlazzo N, et al. Reactivity and physicochemical characterization of V2O5-WO3/TiO2 de-NOx catalysts[J]. Journal of Catalysis, 1995, 155(1): 117-130. |
19 | Gan L N, Guo F, Yu J, et al. Improved low-temperature activity of V2O5-WO3/TiO2 for denitration using different vanadium precursors[J]. Catalysts, 2016, 6(2): 25. |
20 | Abubakar A, Li C M, Huangfu L, et al. Simultaneous removal of particulates and NO by the catalytic bag filter containing V2O5-MoO3/TiO2[J]. Korean Journal of Chemical Engineering, 2020, 37(4): 633-640. |
21 | 单良, 尹荣强, 王慧, 等. VMoTi/玻纤复合催化滤布制备及其除尘协同脱硝性能研究[J]. 化工学报, 2021,72(9): 4892-4899. |
Shan L, Yin R Q, Wang H, et al. Preparation of VMoTi/glass fiber catalytic filter-cloth and research on its dust and NOx synergistic removal performance[J]. CIESC Journal, 2021,72(9): 4892-4899. | |
22 | Yu J, Li C M, Guo F, et al. The pilot demonstration of a honeycomb catalyst for the DeNOx of low-temperature flue gas from an industrial coking plant[J]. Fuel, 2018, 219: 37-49. |
23 | Ma Z R, Wu X D, Feng Y, et al. Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5-WO3/TiO2 catalyst[J]. Progress in Natural Science: Materials International, 2015, 25(4): 342-352. |
24 | Jeon S W, Song I, Lee H, et al. Enhanced activity of vanadia supported on microporous titania for the selective catalytic reduction of NO with NH3: effect of promoters[J]. Chemosphere, 2021, 275: 130105. |
25 | Han L, Cai S, Gao M, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976. |
26 | Apostolescu N, Geiger B, Hizbullah K, et al. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts[J]. Applied Catalysis B: Environmental, 2006, 62(1/2): 104-114. |
27 | Amiridis M D, Wachs I E, Deo G, et al. Reactivity of V2O5 catalysts for the selective catalytic reduction of NO by NH3: influence of vanadia loading, H2O, and SO2[J]. Journal of Catalysis, 1996, 161(1): 247-253. |
28 | Turco M, Lisi L, Pirone R, et al. Effect of water on the kinetics of nitric oxide reduction over a high-surface-area V2O5/TiO2 catalyst[J]. Applied Catalysis B: Environmental, 1994, 3(2/3): 133-149. |
29 | Kwon D W, Park K H, Hong S C. Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum[J]. Chemical Engineering Journal, 2016, 284: 315-324. |
30 | 尹子骏, 苏胜, 卿梦霞, 等. 一种典型钒钛系SCR催化剂SO3生成特性研究[J]. 化工学报, 2021, 72(5): 2596-2603. |
Yin Z J, Su S, Qing M X, et al. Study on SO3 formation characteristics of a typical vanadium titanium SCR catalyst[J]. CIESC Journal, 2021, 72(5): 2596-2603. | |
31 | Guo X Y, Bartholomew C, Hecker W, et al. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems[J]. Applied Catalysis B: Environmental, 2009, 92(1/2): 30-40. |
32 | 刘亭, 沈伯雄, 朱国营, 等. 抗水、抗SO2的低温选择性催化还原催化剂研究进展[J]. 环境污染与防治, 2008, 30(11): 80-83. |
Liu T, Shen B X, Zhu G Y, et al. A review of research in H2O and SO2 resistant low-temperature SCR catalysts[J]. Environmental Pollution & Control, 2008, 30(11): 80-83. | |
33 | Cornaglia L M, Lombardo E A. XPS studies of the surface oxidation states on vanadium-phosphorus-oxygen (VPO) equilibrated catalysts[J]. Applied Catalysis A: General, 1995, 127(1/2): 125-138. |
34 | Romano E J, Schulz K H. A XPS investigation of SO2 adsorption on ceria-zirconia mixed-metal oxides[J]. Applied Surface Science, 2005, 246(1/2/3): 262-270. |
[1] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[2] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[3] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[4] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[5] | Hui YANG, Hongze LI, Quan CHEN, Zexi ZHENG, Ran LI, Qicheng SUN. Dynamics of the transition of mass flow to funnel flow in a silo [J]. CIESC Journal, 2022, 73(6): 2722-2731. |
[6] | Yilin LIU, Yu LI, Yaxiong YU, Zheqing HUANG, Qiang ZHOU. Construction of two parameter mesoscale heat transfer model for gas-solid flow based on resetting temperature method [J]. CIESC Journal, 2022, 73(6): 2612-2621. |
[7] | Tianqi TANG, Yurong HE. Effect of magnetic field on the mesoscale structure evolution process in a wet particle fluidized bed [J]. CIESC Journal, 2022, 73(6): 2636-2648. |
[8] | Biao HAN, Chao SHANG, Yongheng JIANG, Dexian HUANG. Object-oriented refinery plant-wide scheduling optimization model and program framework [J]. CIESC Journal, 2022, 73(4): 1623-1630. |
[9] | Wei ZHOU, Fuye WANG, Ning HE, Haibin YU, Xinbin MA, Jiaxu LIU. Study on the relationship of active centers and catalytic performance of Cu/SSZ-13 for NH3-SCR [J]. CIESC Journal, 2022, 73(2): 672-680. |
[10] | Meng HUO, Xiaowan PENG, Jin ZHAO, Qiuwei MA, Chun DENG, Bei LIU, Guangjin CHEN. COSMO-RS based solvent screening and H2/CO separation experiments for CO absorption by ionic liquids [J]. CIESC Journal, 2022, 73(12): 5305-5313. |
[11] | Shiyang YE, Min CHENG, Xu JI, Yiyang DAI, Yagu DANG, Kexin BI, Zhiwei ZHAO, Li ZHOU. High-throughput computational screening strategy for high-performance COF materials: separation of hexane isomers [J]. CIESC Journal, 2022, 73(11): 5138-5149. |
[12] | Xing TIAN, Jiayue ZHANG, Zhigang GUO, Jian YANG, Qiuwang WANG. Flow and heat transfer characteristics of particles flowing along the plate with different mixing elements [J]. CIESC Journal, 2022, 73(11): 4884-4892. |
[13] | Yuxian XIE, Tao LIU, Sheng SU, Lijun LIU, Yuxiu ZHONG, Zhiwei MA, Kai XU, Yi WANG, Song HU, Jun XIANG. Influence of oxygen content in industrial kiln flue gas on NH3-SCR denitration reaction of vanadium-titanium catalysts [J]. CIESC Journal, 2022, 73(10): 4410-4418. |
[14] | LI Minxia, ZHAN Haomiao, WANG Pai, LIU Xuetao, LI Yuhan, MA Yitai. A CO2 transcritical refrigeration system with ejector and economizer [J]. CIESC Journal, 2021, 72(S1): 146-152. |
[15] | Zeyan LI, Xing FAN, Jian LI. Non-thermal plasma enhanced hydrolysis of urea decomposition by-products over TiO2 [J]. CIESC Journal, 2021, 72(9): 4698-4707. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 507
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 389
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||