CIESC Journal ›› 2023, Vol. 74 ›› Issue (1): 205-223.DOI: 10.11949/0438-1157.20221311
• Reviews and monographs • Previous Articles Next Articles
Jiachen SUN1,2(), Chunlei PEI1,2, Sai CHEN1,2, Zhijian ZHAO1,2, Shengbao HE3, Jinlong GONG1,2()
Received:
2022-09-30
Revised:
2023-02-14
Online:
2023-03-20
Published:
2023-01-05
Contact:
Jinlong GONG
孙嘉辰1,2(), 裴春雷1,2, 陈赛1,2, 赵志坚1,2, 何盛宝3, 巩金龙1,2()
通讯作者:
巩金龙
作者简介:
孙嘉辰(1994—),男,博士研究生,Jiachens@tju.edu.cn
基金资助:
CLC Number:
Jiachen SUN, Chunlei PEI, Sai CHEN, Zhijian ZHAO, Shengbao HE, Jinlong GONG. Advances in chemical-looping oxidative dehydrogenation of light alkanes[J]. CIESC Journal, 2023, 74(1): 205-223.
孙嘉辰, 裴春雷, 陈赛, 赵志坚, 何盛宝, 巩金龙. 化学链低碳烷烃氧化脱氢技术进展[J]. 化工学报, 2023, 74(1): 205-223.
模式 | 载氧体 | 温度/℃ | 气相组成 | 转化率 (H2或C n H2n+2)/% | 选择性/% | 文献 |
---|---|---|---|---|---|---|
选择性氢燃烧 | Na2WO4/CaMnO3 | 850 | 40% H2,40% C2H4,Ar平衡气(100 ml/L) | >85 (H2) | ~90 | [ |
Na2WO4/Mg6MnO8 | 850 | 80% C2H6,Ar平衡气(4500 h-1) | 81.8(C2H4) | 76.0 | [ | |
Na2WO4/LaMnO3 | 800 | 40% C2H4,Ar平衡气(3400 h-1) | 70(C2H6) | 85 | [ | |
Co0.3Mo0.7/Fe2O3 | 825 | 12.5% C2H6,Ar平衡气(40 ml/min) | 56.2(C2H6) | 87.4 | [ | |
Bi-Ce0.75Zr0.25O2 | 550 | 2.5% C2H4,2.5% H2,N2平衡气(100 ml/min) | 90(H2) | — | [ | |
Ni-HY | 600 | 10% C2H6, He平衡气(5100 h-1) | 18(C2H6) | 97 | [ | |
Na2WO4/CuMn2O4 | 720 | 10% C2H6,N2平衡气(50 ml/min) | 58.8(C2H6) | 86.4 | [ | |
氧化脱氢 | V-TiO2 | 500 | 19% C3H8,N2平衡气(21 ml/min) | ~17(C3H8) | 90 | [ |
MoVO x -Al2O3 | 500 | 19% C3H8,N2平衡气(21 ml/min) | 36(C3H8) | 89 | [ | |
H3PMo12O40/Al2O3 | 450 | 19% C3H8,N2平衡气(21 ml/min) | ~7(C3H8) | >90 | [ | |
MoO x -Fe2O3 | 600 | 80% C2H6,Ar平衡气(1500 h-1) | 4.9(C2H6) | 62.2 | [ | |
Mg-La1.6Sr0.4FeCoO6 | 725 | 40% C2H6,N2平衡气(10 ml/min) | 52.9(C2H6) | 89.4 | [ | |
LiBr-La0.8Sr0.2FeO3 | 500 | 80% C4H10,Ar平衡气(30 ml/min) | 75.6(C4H10) | 56.2 | [ | |
Li2O-La x Sr2-x FeO4-δ | 700 | 37.5% C2H6,N2平衡气(40 ml/min) | 61(C2H6) | 90 | [ | |
Li2CO3-La0.8Sr0.2FeO3 | 700 | 80% C2H6,Ar平衡气(40 ml/min) | 50(C2H6) | 91 | [ | |
Cr-Ce-K/Al2O3 | 630 | 50% C3H8,N2平衡气(17 ml/min) | 57.5(C3H8) | 78 | [ | |
Ce-SrFeO3 | 725 | 80% C2H6,Ar平衡气(20 ml/min) | 29(C2H6) | 82 | [ |
Table 1 Summary of reported oxygen carriers, reaction conditions, and performance for chemical-looping oxidative dehydrogenation of light alkanes
模式 | 载氧体 | 温度/℃ | 气相组成 | 转化率 (H2或C n H2n+2)/% | 选择性/% | 文献 |
---|---|---|---|---|---|---|
选择性氢燃烧 | Na2WO4/CaMnO3 | 850 | 40% H2,40% C2H4,Ar平衡气(100 ml/L) | >85 (H2) | ~90 | [ |
Na2WO4/Mg6MnO8 | 850 | 80% C2H6,Ar平衡气(4500 h-1) | 81.8(C2H4) | 76.0 | [ | |
Na2WO4/LaMnO3 | 800 | 40% C2H4,Ar平衡气(3400 h-1) | 70(C2H6) | 85 | [ | |
Co0.3Mo0.7/Fe2O3 | 825 | 12.5% C2H6,Ar平衡气(40 ml/min) | 56.2(C2H6) | 87.4 | [ | |
Bi-Ce0.75Zr0.25O2 | 550 | 2.5% C2H4,2.5% H2,N2平衡气(100 ml/min) | 90(H2) | — | [ | |
Ni-HY | 600 | 10% C2H6, He平衡气(5100 h-1) | 18(C2H6) | 97 | [ | |
Na2WO4/CuMn2O4 | 720 | 10% C2H6,N2平衡气(50 ml/min) | 58.8(C2H6) | 86.4 | [ | |
氧化脱氢 | V-TiO2 | 500 | 19% C3H8,N2平衡气(21 ml/min) | ~17(C3H8) | 90 | [ |
MoVO x -Al2O3 | 500 | 19% C3H8,N2平衡气(21 ml/min) | 36(C3H8) | 89 | [ | |
H3PMo12O40/Al2O3 | 450 | 19% C3H8,N2平衡气(21 ml/min) | ~7(C3H8) | >90 | [ | |
MoO x -Fe2O3 | 600 | 80% C2H6,Ar平衡气(1500 h-1) | 4.9(C2H6) | 62.2 | [ | |
Mg-La1.6Sr0.4FeCoO6 | 725 | 40% C2H6,N2平衡气(10 ml/min) | 52.9(C2H6) | 89.4 | [ | |
LiBr-La0.8Sr0.2FeO3 | 500 | 80% C4H10,Ar平衡气(30 ml/min) | 75.6(C4H10) | 56.2 | [ | |
Li2O-La x Sr2-x FeO4-δ | 700 | 37.5% C2H6,N2平衡气(40 ml/min) | 61(C2H6) | 90 | [ | |
Li2CO3-La0.8Sr0.2FeO3 | 700 | 80% C2H6,Ar平衡气(40 ml/min) | 50(C2H6) | 91 | [ | |
Cr-Ce-K/Al2O3 | 630 | 50% C3H8,N2平衡气(17 ml/min) | 57.5(C3H8) | 78 | [ | |
Ce-SrFeO3 | 725 | 80% C2H6,Ar平衡气(20 ml/min) | 29(C2H6) | 82 | [ |
名称 | 反应模型 | 微分形式f(x)=1/kapp×dx/dt | 积分形式g(x)=kapp dt |
---|---|---|---|
F1 | First-order or Avrami–Erofe’ev (n=1) | (1-x) | -ln(1-x) |
F1.5 | Three-halves order | (1-x)3/2 | 2[(1-x)-1/2-1] |
F2 | Second-order | (1-x)2 | 1/(1-x)-1 |
F3 | Third-order | (1-x)3 | (1/2)[(1-x)-2-1] |
R1 | Zero-order | 1 | x |
R2 | Contracting area | 2(1-x)1/2 | 1-(1-x)1/2 |
R3 | Contracting volume | 3(1-x)2/3 | 1-(1-x)1/3 |
D1 | 1-D diffusion | 1/(2x) | x2 |
D2 | 2-D diffusion, Valensi equation | 1/[-ln(1-x)] | (1-x)ln(1-x)+x |
D3 | 3-D diffusion, Jander equation | 3(1-x)1/3/[2(1-x)-1/3-1] | [1-(1-x)1/3]2 |
D4 | Ginstling-Brounshtein equation | 3/[2(1-x)-1/3-1] | 1-2x/3-(1-x)2/3 |
AE0.5 | Avrami-Erofe’ev (n=0.5) | (1/2)(1-x)[-ln(1-x)]-1 | [-ln(1-x)]2 |
AE1.5 | Avrami-Erofe’ev (n=1.5) | (3/2)(1-x)[-ln(1-x)]1/3 | [-ln(1-x)]2/3 |
AE2 | Avrami-Erofe’ev (n=2) | 2(1-x)[-ln(1-x)]1/2 | [-ln(1-x)]1/2 |
AE3 | Avrami-Erofe’ev (n=3) | 3(1-x)[-ln(1-x)]2/3 | [-ln(1-x)]1/3 |
Table 2 Rate and integral expressions for different solid-state kinetic models[87]
名称 | 反应模型 | 微分形式f(x)=1/kapp×dx/dt | 积分形式g(x)=kapp dt |
---|---|---|---|
F1 | First-order or Avrami–Erofe’ev (n=1) | (1-x) | -ln(1-x) |
F1.5 | Three-halves order | (1-x)3/2 | 2[(1-x)-1/2-1] |
F2 | Second-order | (1-x)2 | 1/(1-x)-1 |
F3 | Third-order | (1-x)3 | (1/2)[(1-x)-2-1] |
R1 | Zero-order | 1 | x |
R2 | Contracting area | 2(1-x)1/2 | 1-(1-x)1/2 |
R3 | Contracting volume | 3(1-x)2/3 | 1-(1-x)1/3 |
D1 | 1-D diffusion | 1/(2x) | x2 |
D2 | 2-D diffusion, Valensi equation | 1/[-ln(1-x)] | (1-x)ln(1-x)+x |
D3 | 3-D diffusion, Jander equation | 3(1-x)1/3/[2(1-x)-1/3-1] | [1-(1-x)1/3]2 |
D4 | Ginstling-Brounshtein equation | 3/[2(1-x)-1/3-1] | 1-2x/3-(1-x)2/3 |
AE0.5 | Avrami-Erofe’ev (n=0.5) | (1/2)(1-x)[-ln(1-x)]-1 | [-ln(1-x)]2 |
AE1.5 | Avrami-Erofe’ev (n=1.5) | (3/2)(1-x)[-ln(1-x)]1/3 | [-ln(1-x)]2/3 |
AE2 | Avrami-Erofe’ev (n=2) | 2(1-x)[-ln(1-x)]1/2 | [-ln(1-x)]1/2 |
AE3 | Avrami-Erofe’ev (n=3) | 3(1-x)[-ln(1-x)]2/3 | [-ln(1-x)]1/3 |
1 | McCoy M. The case for saltigo[J]. Chemical & Engineering News, 2006, 84(11): 28. |
2 | Sattler J J H B, Ruiz-Martinez J, Santillan-Jimenez E, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chemical Reviews, 2014, 114(20): 10613-10653. |
3 | Monai M, Gambino M, Wannakao S, et al. Propane to olefins tandem catalysis: a selective route towards light olefins production[J]. Chemical Society Reviews, 2021, 50(20): 11503-11529. |
4 | Chen S, Chang X, Sun G D, et al. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies[J]. Chemical Society Reviews, 2021, 50(5): 3315-3354. |
5 | Kung H H. Oxidative dehydrogenation of light (C2 to C4) alkanes[M]//Advances in Catalysis. Amsterdam: Elsevier, 1994: 1-38. |
6 | Zhu X, Imtiaz Q, Donat F, et al. Chemical looping beyond combustion—a perspective[J]. Energy & Environmental Science, 2020, 13(3): 772-804. |
7 | Adanez J, Abad A, Garcia-Labiano F, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2): 215-282. |
8 | Tang M C, Xu L, Fan M H. Progress in oxygen carrier development of methane-based chemical-looping reforming: a review[J]. Applied Energy, 2015, 151(1): 143-156. |
9 | He F, Huang Z, Wei G Q, et al. Biomass chemical-looping gasification coupled with water/CO2-splitting using NiFe2O4 as an oxygen carrier[J]. Energy Conversion and Management, 2019, 201(1): 112157. |
10 | Sun Z, Chen S Y, Hu J, et al. Ca2Fe2O5: a promising oxygen carrier for CO/CH4 conversion and almost-pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process[J]. Applied Energy, 2018, 211(1): 431-442. |
11 | Gao W B, Guo J P, Wang P K, et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers[J]. Nature Energy, 2018, 3(12): 1067-1075. |
12 | Zeng L, Cheng Z, Fan J A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364. |
13 | Haribal V P, Neal L M, Li F X. Oxidative dehydrogenation of ethane under a cyclic redox scheme—process simulations and analysis[J]. Energy, 2017, 119(15): 1024-1035. |
14 | Dai Y H, Gao X, Wang Q J, et al. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane[J]. Chemical Society Reviews, 2021, 50(9): 5590-5630. |
15 | Gomez E, Yan B H, Kattel S, et al. Carbon dioxide reduction in tandem with light-alkane dehydrogenation[J]. Nature Reviews Chemistry, 2019, 3(11): 638-649. |
16 | Wang Y L, Hu P, Yang J, et al. C—H bond activation in light alkanes: a theoretical perspective[J]. Chemical Society Reviews, 2021, 50(7): 4299-4358. |
17 | Cavani F, Ballarini N, Cericola A. Oxidative dehydrogenation of ethane and propane: how far from commercial implementation?[J]. Catalysis Today, 2007, 127(1/2/3/4): 113-131. |
18 | Callahan J L, Grasselli R K. A selectivity factor in vapor-phase hydrocarbon oxidation catalysis[J]. AIChE Journal, 1963, 9(6): 755-760. |
19 | Eastman A D, Kolts J H. Oxidative dehydrogenation catalyst: US4370259[P]. 1983-01-25. |
20 | Creaser D, Andersson B, Hudgins R R, et al. Cyclic operation of the oxidative dehydrogenation of propane[J]. Chemical Engineering Science, 1999, 54(20): 4437-4448. |
21 | Vrieland G E, Khazai B, Murchison C B. Anaerobic oxidation of butane to butadiene over magnesium molybdate catalysts (Ⅱ): Magnesia alumina supported catalysts[J]. Applied Catalysis A: General, 1996, 134(1): 123-145. |
22 | Grasselli R K, Stern D L, Tsikoyiannis J G. Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC)[J]. Applied Catalysis A: General, 1999, 189(1): 9-14. |
23 | Neal L M, Yusuf S, Sofranko J A, et al. Oxidative dehydrogenation of ethane: a chemical looping approach[J]. Energy Technology, 2016, 4(10): 1200-1208. |
24 | Dudek R B, Gao Y F, Zhang J S, et al. Manganese‐containing redox catalysts for selective hydrogen combustion under a cyclic redox scheme[J]. AIChE Journal, 2018, 64(8): 3141-3150. |
25 | Yusuf S, Neal L, Bao Z H, et al. Effects of sodium and tungsten promoters on Mg6MnO8-based core-shell redox catalysts for chemical looping-oxidative dehydrogenation of ethane[J]. ACS Catalysis, 2019, 9(4): 3174-3186. |
26 | Ding W X, Zhao K, Jiang S C, et al. Alkali-metal enhanced LaMnO3 perovskite oxides for chemical looping oxidative dehydrogenation of ethane[J]. Applied Catalysis A: General, 2021, 609(5): 117910-117918. |
27 | Tian X, Zheng C H, Li F X, et al. Co and Mo co-doped Fe2O3 for selective ethylene production via chemical looping oxidative dehydrogenation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(23): 8002-8011. |
28 | Chan M S C, Baldovi H G, Dennis J S. Enhancing the capacity of oxygen carriers for selective oxidations through phase cooperation: bismuth oxide and ceria-zirconia[J]. Catalysis Science & Technology, 2018, 8(3): 887-897. |
29 | Wang C J, Yang B, Gu Q Q, et al. Near 100% ethene selectivity achieved by tailoring dual active sites to isolate dehydrogenation and oxidation[J]. Nature Communications, 2021, 12: 5447. |
30 | Wang T, Gao Y, Liu Y, et al. Core-shell Na2WO4/CuMn2O4 oxygen carrier with high oxygen capacity for chemical looping oxidative dehydrogenation of ethane[J]. Fuel, 2021, 303(1): 121286. |
31 | Chen S, Pei C L, Chang X, et al. Coverage-dependent behaviors of vanadium oxides for chemical looping oxidative dehydrogenation[J]. Angewandte Chemie International Edition, 2020, 59(49): 22072-22079. |
32 | Chen S, Zeng L, Mu R T, et al. Modulating lattice oxygen in dual-functional Mo-V-O mixed oxides for chemical looping oxidative dehydrogenation[J]. Journal of the American Chemical Society, 2019, 141(47): 18653-18657. |
33 | Jiang C G, Chang X, Wang X H, et al. Enhanced C—H bond activation by tuning the local environment of surface lattice oxygen of MoO3 [J]. Chemical Science, 2022, 13(25): 7468-7474. |
34 | Novotný P, Yusuf S, Li F X, et al. Oxidative dehydrogenation of ethane using MoO3/Fe2O3 catalysts in a cyclic redox mode[J]. Catalysis Today, 2018, 317(1): 50-55. |
35 | Li M, Gao Y F, Zhao K, et al. Mg-doped La1.6Sr0.4FeCoO6 for anaerobic oxidative dehydrogenation of ethane using surface-absorbed oxygen with tuned electronic structure[J]. Fuel Processing Technology, 2021, 216(1): 106771-106780. |
36 | Gao Y F, Wang X J, Corolla N, et al. Alkali metal halide-coated perovskite redox catalysts for anaerobic oxidative dehydrogenation of n-butane[J]. Science Advances, 2022, 8(30): eabo7343. |
37 | Gao Y F, Neal L M, Li F X. Li-promoted La x Sr2– x FeO4- δ core-shell redox catalysts for oxidative dehydrogenation of ethane under a cyclic redox scheme[J]. ACS Catalysis, 2016, 6(11): 7293-7302. |
38 | Gao Y F, Haeri F, He F, et al. Alkali metal-promoted La x Sr2- x FeO4- δ redox catalysts for chemical looping oxidative dehydrogenation of ethane[J]. ACS Catalysis, 2018, 8(3): 1757-1766. |
39 | Gao Y F, Wang X J, Liu J C, et al. A molten carbonate shell modified perovskite redox catalyst for anaerobic oxidative dehydrogenation of ethane[J]. Science Advances, 2020, 6(17): eaaz9339. |
40 | Kang K H, Kim T H, Choi W C, et al. Dehydrogenation of propane to propylene over CrO y -CeO2-K2O/γ-Al2O3 catalysts: effect of cerium content[J]. Catalysis Communications, 2015, 72(5): 68-72. |
41 | Tian X, Zheng C H, Zhao H B. Ce-modified SrFeO3- δ for ethane oxidative dehydrogenation coupled with CO2 splitting via a chemical looping scheme[J]. Applied Catalysis B: Environmental, 2022, 303: 120894. |
42 | Dudek R B, Li F X. Selective hydrogen combustion as an effective approach for intensified chemical production via the chemical looping strategy[J]. Fuel Processing Technology, 2021, 218: 106827. |
43 | Wang X J, Gao Y F, Krzystowczyk E, et al. High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications[J]. Energy & Environmental Science, 2022, 15(4): 1512-1528. |
44 | Fan L S. Chemical Looping Partial Oxidation: Gasification, Reforming, and Chemical Syntheses[M].Cambridge: Cambridge University Press, 2017: 57-60. |
45 | Liu H Y, Wang B J, Fan M H, et al. Study on carbon deposition associated with catalytic CH4 reforming by using density functional theory[J]. Fuel, 2013, 113: 712-718. |
46 | Wu T W, Yu Q B, Hou L M, et al. Selecting suitable oxygen carriers for chemical looping oxidative dehydrogenation of propane by thermodynamic method[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(4): 1837-1843. |
47 | Carrero C A, Schlögl R, Wachs I E, et al. Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts[J]. ACS Catalysis, 2014, 4(10): 3357-3380. |
48 | Zhao Z J, Chiu C C, Gong J L. Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts[J]. Chemical Science, 2015, 6(8): 4403-4425. |
49 | Zhao Z J, Liu S H, Zha S J, et al. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors[J]. Nature Reviews Materials, 2019, 4(12): 792-804. |
50 | Latimer A A, Kulkarni A R, Aljama H, et al. Understanding trends in C—H bond activation in heterogeneous catalysis[J]. Nature Materials, 2017, 16(2): 225-229. |
51 | Dickens C F, Montoya J H, Kulkarni A R, et al. An electronic structure descriptor for oxygen reactivity at metal and metal-oxide surfaces[J]. Surface Science, 2019, 681: 122-129. |
52 | Xiong C Y, Chen S, Yang P P, et al. Structure-performance relationships for propane dehydrogenation over aluminum supported vanadium oxide[J]. ACS Catalysis, 2019, 9(7): 5816-5827. |
53 | Jiang C G, Song H B, Sun G, et al. Data-driven interpretable descriptors for the structure-activity relationship of surface lattice oxygen on doped vanadium oxides[J]. Angewandte Chemie International Edition, 2022, 134(35): e202206758. |
54 | Idriss H, Barteau M A. Active sites on oxides: from single crystals to catalysts[M]// Advances in Catalysis. New York: Academic Press, 2000: 261-331. |
55 | Hao F, Gao Y F, Neal L, et al. Sodium tungstate-promoted CaMnO3 as an effective, phase-transition redox catalyst for redox oxidative cracking of cyclohexane[J]. Journal of Catalysis, 2020, 385: 213-223. |
56 | Tian X, Dudek R B, Gao Y F, et al. Redox oxidative cracking of n-hexane with Fe-substituted barium hexaaluminates as redox catalysts[J]. Catalysis Science & Technology, 2019, 9(9): 2211-2220. |
57 | Tsikoyiannis J G, Stern D L, Grasselli R K. Metal oxides as selective hydrogen combustion (SHC) catalysts and their potential in light paraffin dehydrogenation[J]. Journal of Catalysis, 1999, 184(1): 77-86. |
58 | Wang J, Song Y H, Liu Z T, et al. Active and selective nature of supported CrO x for the oxidative dehydrogenation of propane with carbon dioxide[J]. Applied Catalysis B: Environmental, 2021, 297(15): 120400. |
59 | Abello M C, Gomez M F, Ferretti O. Mo/γ-Al2O3 catalysts for the oxidative dehydrogenation of propane: effect of Mo loading[J]. Applied Catalysis A: General, 2001, 207(1/2): 421-431. |
60 | Khodakov A, Yang J, Su S, et al. Structure and properties of vanadium oxide-zirconia catalysts for propane oxidative dehydrogenation[J]. Journal of Catalysis, 1998, 177(2): 343-351. |
61 | Fukudome K, Ikenaga N O, Miyake T, et al. Oxidative dehydrogenation of propane using lattice oxygen of vanadium oxides on silica[J]. Catalysis Science & Technology, 2011, 1(6): 987-998. |
62 | Wu T W, Yu Q B, Roghair I, et al. Chemical looping oxidative dehydrogenation of propane: a comparative study of Ga-based, Mo-based, V-based oxygen carriers[J]. Chemical Engineering and Processing-Process Intensification, 2020, 157: 108137. |
63 | Novotný P, Yusuf S, Li F X, et al. MoO3/Al2O3 catalysts for chemical-looping oxidative dehydrogenation of ethane[J]. The Journal of Chemical Physics, 2020, 152(4): 044713. |
64 | Wu T W, Yu Q B, Wang K, et al. Development of V-based oxygen carriers for chemical looping oxidative dehydrogenation of propane[J]. Catalysts, 2021, 11(1): 119. |
65 | Sim S, Gong S J, Bae J, et al. Chromium oxide supported on Zr modified alumina for stable and selective propane dehydrogenation in oxygen free moving bed process[J]. Molecular Catalysis, 2017, 436: 164-173. |
66 | Yu Z L, Yang Y Y, Yang S, et al. Iron-based oxygen carriers in chemical looping conversions: a review[J]. Carbon Resources Conversion, 2019, 2(1): 23-34. |
67 | Grant J T, Venegas J M, McDermott W P, et al. Aerobic oxidations of light alkanes over solid metal oxide catalysts[J]. Chemical Reviews, 2018, 118(5): 2769-2815. |
68 | Zheng Y S, Zhang M, Li Q, et al. Electronic origin of oxygen transport behavior in La-based perovskites: a density functional theory study[J]. The Journal of Physical Chemistry C, 2019, 123(1): 275-290. |
69 | Wang H F, Gong X Q, Guo Y L, et al. A model to understand the oxygen vacancy formation in Zr-doped CeO2: electrostatic interaction and structural relaxation[J]. The Journal of Physical Chemistry C, 2009, 113(23): 10229-10232. |
70 | Jiang X, Sharma L, Fung V, et al. Oxidative dehydrogenation of propane to propylene with soft oxidants via heterogeneous catalysis[J]. ACS Catalysis, 2021, 11(4): 2182-2234. |
71 | Chang H, Bjørgum E, Mihai O, et al. Effects of oxygen mobility in La-Fe-based perovskites on the catalytic activity and selectivity of methane oxidation[J]. ACS Catalysis, 2020, 10(6): 3707-3719. |
72 | Dai X P, Li R J, Yu C C, et al. Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO3 (A= La, Nd, Eu) perovskite-type oxides as oxygen storage[J]. The Journal of Physical Chemistry B, 2006, 110(45): 22525-22531. |
73 | Qin L, Cheng Z, Fan J A, et al. Nanostructure formation mechanism and ion diffusion in iron-titanium composite materials with chemical looping redox reactions[J]. Journal of Materials Chemistry A, 2015, 3(21): 11302-11312. |
74 | Shafiefarhood A, Galinsky N, Huang Y, et al. Fe2O3@La x Sr1- x FeO3 core-shell redox catalyst for methane partial oxidation[J]. ChemCatChem, 2014, 6(3): 790-799. |
75 | Hu J W, Galvita V V, Poelman H, et al. A core-shell structured Fe2O3/ZrO2@ZrO2 nanomaterial with enhanced redox activity and stability for CO2 conversion[J]. Journal of CO2 Utilization, 2017, 17: 20-31. |
76 | Liu L, Zachariah M R. Enhanced performance of alkali metal doped Fe2O3 and Fe2O3/Al2O3 composites as oxygen carrier material in chemical looping combustion[J]. Energy & Fuels, 2013, 27(8): 4977-4983. |
77 | Imtiaz Q, Kurlov A, Rupp J L M, et al. Highly efficient oxygen-storage material with intrinsic coke resistance for chemical looping combustion-based CO2 capture[J]. ChemSusChem, 2015, 8(12): 2055-2065. |
78 | Hossain M M, de Lasa H I. Reactivity and stability of Co-Ni/Al2O3 oxygen carrier in multicycle CLC[J]. AIChE Journal, 2007, 53(7): 1817-1829. |
79 | Zhao H B, Liu L M, Wang B W, et al. Sol-gel-derived NiO/NiAl2O4 oxygen carriers for chemical-looping combustion by coal char[J]. Energy & Fuels, 2008, 22(2): 898-905. |
80 | Lambert A, Delquié C, Clémeneçon I, et al. Synthesis and characterization of bimetallic Fe/Mn oxides for chemical looping combustion[J]. Energy Procedia, 2009, 1(1): 375-381. |
81 | Wang S Z, Wang G X, Jiang F, et al. Chemical looping combustion of coke oven gas by using Fe2O3/CuO with MgAl2O4 as oxygen carrier[J]. Energy & Environmental Science, 2010, 3(9): 1353-1360. |
82 | de Diego L F, Garcı́a-Labiano F, Adánez J, et al. Development of Cu-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2004, 83(13): 1749-1757. |
83 | Zhao H B, Mei D F, Ma J, et al. Comparison of preparation methods for iron-alumina oxygen carrier and its reduction kinetics with hydrogen in chemical looping combustion[J]. Asia-Pacific Journal of Chemical Engineering, 2014, 9(4): 610-622. |
84 | Liu Y K, Long Y H, Tang Y Q, et al. Effect of preparation method on the structural characteristics of NiO-ZrO2 oxygen carriers for chemical-looping combustion[J]. Chemical Research in Chinese Universities, 2019, 35(6): 1024-1031. |
85 | Marin G B, Galvita V V, Yablonsky G S. Kinetics of chemical processes: from molecular to industrial scale[J]. Journal of Catalysis, 2021, 404: 745-759. |
86 | Iliuta I, Tahoces R, Patience G S, et al. Chemical-looping combustion process: kinetics and mathematical modeling[J]. AIChE Journal, 2010, 56(4): 1063-1079. |
87 | Khawam A, Flanagan D R. Solid-state kinetic models: basics and mathematical fundamentals[J]. The Journal of Physical Chemistry B, 2006, 110(35): 17315-17328. |
88 | Hancock J D, Sharp J H. Method of comparing solid‐state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3 [J]. Journal of the American Ceramic Society, 1972, 55(2): 74-77. |
89 | Tian Y, Dudek R B, Westmoreland P R, et al. Effect of sodium tungstate promoter on the reduction kinetics of CaMn0.9Fe0.1O3 for chemical looping-oxidative dehydrogenation of ethane[J]. Chemical Engineering Journal, 2020, 398(15): 125583. |
90 | Chen Y Y, Nadgouda S, Shah V, et al. Oxidation kinetic modelling of Fe-based oxygen carriers for chemical looping applications: impact of the topochemical effect[J]. Applied Energy, 2020, 279(1): 115701. |
91 | Riley J, Siriwardane R, Tian H J, et al. Experimental and kinetic analysis for particle scale modeling of a CuO-Fe2O3-Al2O3 oxygen carrier during reduction with H2 in chemical looping combustion applications[J]. Applied Energy, 2018, 228(15): 1515-1530. |
92 | Riley J, Siriwardane R, Tian H J, et al. Particle scale modeling of CuFeAlO4 during reduction with CO in chemical looping applications[J]. Applied Energy, 2019, 251(1): 113178. |
93 | Li Z, Cai J, Liu L. A first-principles microkinetic rate equation theory for heterogeneous reactions: application to reduction of Fe2O3 in chemical looping[J]. Industrial & Engineering Chemistry Research, 2021, 60(43): 15514-15524. |
94 | Sokolov S, Bychkov V Y, Stoyanova M, et al. Effect of VO x species and support on coke formation and catalyst stability in nonoxidative propane dehydrogenation[J]. ChemCatChem, 2015, 7(11): 1691-1700. |
95 | Al-Ghamdi S A, Hossain M M, de Lasa H I. Kinetic modeling of ethane oxidative dehydrogenation over VO x /Al2O3 catalyst in a fluidized-bed riser simulator[J]. Industrial & Engineering Chemistry Research, 2013, 52(14): 5235-5244. |
96 | Hossain M M. Kinetics of oxidative dehydrogenation of propane to propylene using lattice oxygen of VO x /CaO/γ-Al2O3 catalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56(15): 4309-4318. |
97 | Fan L S, Zeng L, Wang W, et al. Chemical looping processes for CO2 capture and carbonaceous fuel conversion-prospect and opportunity[J]. Energy & Environmental Science, 2012, 5(6): 7254-7280. |
98 | Joshi A, Shah V, Mohapatra P, et al. Chemical looping—a perspective on the next-gen technology for efficient fossil fuel utilization[J]. Advances in Applied Energy, 2021, 3(25): 100044. |
99 | Song T, Shen L H. Review of reactor for chemical looping combustion of solid fuels[J]. International Journal of Greenhouse Gas Control, 2018, 76: 92-110. |
100 | 刘一君, 陈时熠, 胡骏, 等. 化学链反应器研究进展[J]. 化工学报, 2021, 72(5): 2392-2412. |
Liu Y J, Chen S Y, Hu J, et al. Review on reactors for chemical looping process[J]. CIESC Journal, 2021, 72(5): 2392-2412. | |
101 | Darvishi A, Davand R, Khorasheh F, et al. Modeling-based optimization of a fixed-bed industrial reactor for oxidative dehydrogenation of propane[J]. Chinese Journal of Chemical Engineering, 2016, 24(5): 612-622. |
102 | Rostom S, de Lasa H. Propane oxidative dehydrogenation on vanadium-based catalysts under oxygen-free atmospheres[J]. Catalysts, 2020, 10(4): 418. |
103 | Fattahi M, Kazemeini M, Khorasheh F, et al. Fixed‐bed multi‐tubular reactors for oxidative dehydrogenation in ethylene process[J]. Chemical Engineering & Technology, 2013, 36(10): 1691-1700. |
104 | Kotanjac Ž S, van Sint Annaland M, Kuipers J A M. A packed bed membrane reactor for the oxidative dehydrogenation of propane on a Ga2O3/MoO3 based catalyst[J]. Chemical Engineering Science, 2010, 65(1): 441-445. |
105 | Che-Galicia G, Ruiz-Martínez R S, López-Isunza F, et al. Modeling of oxidative dehydrogenation of ethane to ethylene on a MoVTeNbO/TiO2 catalyst in an industrial-scale packed bed catalytic reactor[J]. Chemical Engineering Journal, 2015, 280(15): 682-694. |
106 | Chu B Z, Truter L, Alexander Nijhuis T A, et al. Oxidative dehydrogenation of ethane to ethylene over phase-pure M1MoVNbTeO x catalysts in a micro-channel reactor[J]. Catalysis Science & Technology, 2015, 5(5): 2807-2813. |
107 | Rostom S, de Lasa H I. Propane oxidative dehydrogenation using consecutive feed injections and fluidizable VO x /γ-Al2O3 and VO x /ZrO2-γAl2O3 catalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56(45): 13109-13124. |
108 | 曾亮, 巩金龙. 化学链重整直接制氢技术进展[J]. 化工学报, 2015, 66(8): 2854-2862. |
Zeng L, Gong J L, Advances in chemical looping reforming for direct hydrogen production[J]. CIESC Journal, 2015, 66(8): 2854-2862. | |
109 | Zaynali Y, Alavi-Amleshi S M. Comparative study of propane oxidative dehydrogenation in fluidized and fixed bed reactor[J]. Particulate Science and Technology, 2017, 35(6): 667-673. |
110 | Argyle M, Bartholomew C. Heterogeneous catalyst deactivation and regeneration: a review[J]. Catalysts, 2015, 5(1): 145-269. |
111 | Shen Q, Huang F, Tian M, et al. Effect of regeneration period on the selectivity of synthesis gas of Ba-hexaaluminates in chemical looping partial oxidation of methane[J]. ACS Catalysis, 2018, 9(1): 722-731. |
112 | Park C, Hsieh T L, Pottimurthy Y, et al. Design and operations of a 15 kWth subpilot unit for the methane-to-syngas chemical looping process with CO2 utilization[J]. Industrial & Engineering Chemistry Research, 2019, 59(15): 6886-6899. |
113 | 韦迪, 喻俊杰, 邵媛媛, 等. 丙烷化学链氧化脱氢过程模拟与能耗分析[J]. 石油学报 (石油加工), 2020, 36(6): 1361-1369. |
Wei D, Yu J J, Shao Y Y, et al. Process simulation and energy consumption analysis of chemical looping oxidative dehydrogenation of propane[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2020, 36(6): 1361-1369. | |
114 | Rostom S, de Lasa H. Downer fluidized bed reactor modeling for catalytic propane oxidative dehydrogenation with high propylene selectivity[J]. Chemical Engineering and Processing-Process Intensification, 2019, 137: 87-99. |
115 | Brody L, Neal L, Liu J C, et al. Autothermal chemical looping oxidative dehydrogenation of ethane: redox catalyst performance, longevity, and process analysis[J]. Energy & Fuels, 2022, 36(17): 9736-9744. |
116 | Yusuf S, Haribal V, Jackson D, et al. Mixed iron-manganese oxides as redox catalysts for chemical looping-oxidative dehydrogenation of ethane with tailorable heat of reactions[J]. Applied Catalysis B: Environmental, 2019, 257(15): 117885. |
117 | Yüzbasi N S, Abdala P M, Imtiaz Q, et al. The effect of copper on the redox behaviour of iron oxide for chemical-looping hydrogen production probed by in situ X-ray absorption spectroscopy[J]. Physical Chemistry Chemical Physics, 2018, 20(18): 12736-12745. |
118 | Huang Z, Gao N, Lin Y, et al. Exploring the migration and transformation of lattice oxygen during chemical looping with NiFe2O4 oxygen carrier[J]. Chemical Engineering Journal, 2022, 429(1): 132064. |
119 | Zichittella G, Polyhach Y, Tschaggelar R, et al. Quantification of redox sites during catalytic propane oxychlorination by operando EPR spectroscopy[J]. Angewandte Chemie International Edition, 2021, 60(7): 3596-3602. |
120 | Docherty S R, Rochlitz L, Payard P A, et al. Heterogeneous alkane dehydrogenation catalysts investigated via a surface organometallic chemistry approach[J]. Chemical Society Reviews, 2021, 50(9): 5806-5822. |
[1] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[2] | Nini YUAN, Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation [J]. CIESC Journal, 2022, 73(9): 4054-4061. |
[3] | Dan GUO, Yujie FANG, Yihan XU, Zhiyuan LI, Shouying HUANG, Shengping WANG, Xinbin MA. Research progress of the catalytic conversion of ethane and carbon dioxide [J]. CIESC Journal, 2022, 73(8): 3406-3416. |
[4] | Baowen WANG, Gang ZHANG, Tongqing LIU, Weiguang LI, Mengjia WANG, Deshun LIN, Jingjing MA. Research on chemical looping reforming of CH4 by CeO2 doped CuFe2O4 oxygen carrier coupled with CO2 thermocatalytic reduction [J]. CIESC Journal, 2022, 73(12): 5414-5426. |
[5] | Xu ZHAO, Changsheng BU, Xinye WANG, Xin ZHANG, Xiaolei CHENG, Naiji WANG, Guilin PIAO. Kinetics investigation on iron-based oxygen carrier aided oxy-fuel combustion of anthracite char [J]. CIESC Journal, 2022, 73(1): 384-392. |
[6] | Linzhou ZHAO, Yan'e ZHENG, Kongzhai Li, Yaming WANG, Lihong JIANG, Haoxi FAN, Yajing WANG, Xing ZHU, Yonggang WEI. Application of Ce1-xNixOy oxygen carriers in chemical-looping reforming of methane coupled with CO2 reduction [J]. CIESC Journal, 2021, 72(8): 4371-4380. |
[7] | Ding DING, Wenduo LU, Lu HOU, Anhui LU. Preparation of fibrous BPO4/SiO2 catalyst for oxidative dehydrogenation of propane [J]. CIESC Journal, 2021, 72(11): 5590-5597. |
[8] | Li ZHANG, Zonglu YAO, Lixin ZHAO, Zhihe LI, Weiming YI, Peng FU, Chao YUAN. Research progress on thermochemical conversion of biomass to enhance quality and catalyst [J]. CIESC Journal, 2020, 71(8): 3416-3427. |
[9] | Yinghui SU,Hao ZHENG,Lei ZHANG,Liang ZENG. LaMn1-x-yFexCoyO3-δ perovskite based oxygen carriers for chemical looping partial oxidation [J]. CIESC Journal, 2020, 71(11): 5265-5277. |
[10] | Nini YUAN,Hongcun BAI,Mei AN,Xiude HU,Qingjie GUO. Reactivity of low-concentration Cu-doped modified Fe-based oxygen carrier in chemical looping: experiments and theoretical simulations [J]. CIESC Journal, 2020, 71(11): 5294-5302. |
[11] | Daofeng MEI, Haibo ZHAO, Shuiping YAN. Thermodynamics simulation of biogas fueled chemical looping reforming for H2 generation using NiO/Ca2Al2SiO7 [J]. CIESC Journal, 2019, 70(S1): 193-201. |
[12] | Zhiqiang WU, Bo ZHANG, Bolun YANG. Research progress on biomass chemical-looping conversion technology [J]. CIESC Journal, 2019, 70(8): 2835-2853. |
[13] | Lulu WANG, Tao SONG, Jiang ZHANG, Yuanyuan DUAN, Laihong SHEN. Simulation of chemical looping gasification of high-sulfur petroleum coke for syngas production coupled with recycling sulfur in 10 MWth system [J]. CIESC Journal, 2019, 70(6): 2279-2288. |
[14] | Yongjian WU, Chunhuan LUO, Lin WEI, Tanjin ZHU, Qingquan SU. Utilization of converter off-gas based on chemical-looping combustion [J]. CIESC Journal, 2019, 70(5): 1923-1931. |
[15] | Zhihao CHEN, Yanfen LIAO, Fei MO, Guicai LIU, Zhaosheng YU, Xiaoqian MA. Application of MnFeO3 and MnFe2O4 as oxygen carriers for straw chemical looping gasification [J]. CIESC Journal, 2019, 70(12): 4835-4846. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 459
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 791
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||