CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4739-4748.DOI: 10.11949/0438-1157.20230930

• Material science and engineering, nanotechnology • Previous Articles    

A study on production of silica from CO2 mineralization by wollastonite promoted via air-driven membrane electrolysis technology

Xiaolin GAO(), Changguo CHEN()   

  1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
  • Received:2023-09-06 Revised:2023-10-24 Online:2024-01-22 Published:2023-11-25
  • Contact: Changguo CHEN

空气驱动的膜电解技术促进硅灰石矿化CO2产白炭黑的研究

高孝麟(), 陈昌国()   

  1. 重庆大学化学化工学院,重庆 400030
  • 通讯作者: 陈昌国
  • 作者简介:高孝麟(1990—),男,博士,624972527@qq.com

Abstract:

The large amount of CO2 emitted by the burning of fossil fuels contributes to global climate warming. CO2 mineralization is one of the most effective technologies for CO2 terminal emission reduction in recent years. CO2 mineralization can use natural alkaline minerals or industrial alkaline solid waste for transforming acidic CO2 gas into carbonate. Despite its promise, many reported CO2 mineralization methods remain plagued by excessive energy consumption and cost. This study introduces an innovative, environmentally friendly, and energy-efficient air-driven membrane electrolysis technology, tailored for efficient CO2 mineralization and the production of high-quality porous silica materials. The key advancement of this technology hinges on the simultaneous occurrence of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the anode and cathode, respectively, within the electrolytic environment. This unique feature results in low-energy water ionization, generating both alkaline and acidic solutions. Crucially, this developed electrolytic technology demonstrates a substantial reduction in electrolytic voltage, at least 0.5 V lower than conventional electrolytic processes under equivalent current densities. By combining the acidic solution from the anode with a moderately alkaline solution from the cathode to dissolve wollastonite, the resultant mixture yields high-quality porous silica. Subsequently, the filtrate and remaining alkaline solution at the cathode effectively absorb CO2, yielding calcium carbonate as the mineralization product. This breakthrough technology offers a compelling pathway to efficient CO2 utilization through mineralization, addressing both environmental concerns and energy efficiency challenges.

Key words: CO2 capture, electrolysis, silica, electrochemistry, catalyst, CO2 emission reduction

摘要:

化石燃料燃烧排放的大量CO2 造成了全球气候变暖。CO2矿化是近年来CO2末端减排最有效的技术之一。CO2矿化的本质是利用天然碱性矿物或工业碱性固废将酸性CO2气体转化、固定为碳酸盐的过程,但目前所报道的技术大多仍面临高能耗、高成本的限制。提出一种安全、环保、低能耗的空气驱动的膜电解技术,可在低能耗下促使硅灰石有效矿化CO2并产优质多孔白炭黑(二氧化硅)产品。核心技术为:电解条件下,阴极氧气还原反应(ORR)与阳极析氧反应(OER)同时进行实现低能耗下水的电离产生碱性和酸性液体。该电解技术比同电流密度下电解水低至少0.5 V的电解电压。电解所得酸性溶液溶解硅灰石后与电解所得碱性溶液混合可得优质多孔二氧化硅,CO2通入后可被有效吸收并得到矿化产物碳酸钙,实现了高效矿化利用CO2

关键词: 二氧化碳捕集, 电解, 二氧化硅, 电化学, 催化剂, 二氧化碳减排

CLC Number: