CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 1052-1064.DOI: 10.11949/0438-1157.20240133
Shihao LI1(), Zhenhua WU2, Zhanfeng ZHAO1, Hong WU1, Dong YANG2, Jiafu SHI2(), Zhongyi JIANG1()
Received:
2024-01-29
Revised:
2024-02-29
Online:
2024-05-11
Published:
2024-03-25
Contact:
Jiafu SHI, Zhongyi JIANG
李诗浩1(), 吴振华2, 赵展烽1, 吴洪1, 杨冬2, 石家福2(), 姜忠义1()
通讯作者:
石家福,姜忠义
作者简介:
李诗浩(1994—),男,博士研究生,lishihao@tju.edu.cn
基金资助:
CLC Number:
Shihao LI, Zhenhua WU, Zhanfeng ZHAO, Hong WU, Dong YANG, Jiafu SHI, Zhongyi JIANG. Electron transfer, proton transfer and molecule transfer in chemical processes[J]. CIESC Journal, 2024, 75(3): 1052-1064.
李诗浩, 吴振华, 赵展烽, 吴洪, 杨冬, 石家福, 姜忠义. 化工过程中的电子传递、质子传递和分子传递[J]. 化工学报, 2024, 75(3): 1052-1064.
Add to citation manager EndNote|Ris|BibTeX
1 | 张锁江, 彭孝军, 朱旺喜, 等. 化学工程发展战略:高端化、绿色化、智能化[M]. 北京: 化学工业出版社, 2023. |
Zhang S J, Peng X J, Zhu W X, et al. Chemical Engineering Development Strategy: Premium, Greenization, Intelligentization[M]. Beijing: Chemical Industry Press, 2023. | |
2 | 朱贻安,周兴贵,袁渭康. 多相催化微观动力学与催化剂理性设计[J]. 化学反应工程与工艺, 2014, 30(3): 205-211. |
Zhu Y A, Zhou X G, Yuan W K. Microkinetics of heterogeneous catalysis and rational catalyst design[J]. Chemical Reaction Engineering and Technology, 2014, 30(3): 205-211. | |
3 | 段学志,陈文尧,周兴贵,等. 催化剂微尺度结构与反应动力学[J]. 化工学报, 2019, 70(10): 3645-3650. |
Duan X Z, Chen W Y, Zhou X G, et al. Microstructures and reaction kinetics of catalysts[J]. CIESC Journal, 2019, 70(10): 3645-3650. | |
4 | Verkhovskaya M L, Belevich N, Euro L, et al. Real-time electron transfer in respiratory complex Ⅰ[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10): 3763-3767. |
5 | Sansone G, Kelkensberg F, Pérez-Torres J F, et al. Electron localization following attosecond molecular photoionization[J]. Nature, 2010, 465: 763-766. |
6 | Wu J, Magrakvelidze M, Schmidt L P H, et al. Understanding the role of phase in chemical bond breaking with coincidence angular streaking[J]. Nature Communications, 2013, 4: 2177. |
7 | Chen S, Li K, Zhao F, et al. A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production[J]. Nature Communications, 2016, 7: 13169. |
8 | Beaulieu S, Comby A, Clergerie A, et al. Attosecond-resolved photoionization of chiral molecules[J]. Science, 2017, 358(6368): 1288-1294. |
9 | Cheng C, Zhang J J, Zhu B C, et al. Verifying the charge-transfer mechanism in s-scheme heterojunctions using femtosecond transient absorption spectroscopy[J]. Angewandte Chemie International Edition, 2023, 62(8): e202218688. |
10 | Guo M J, Talebian-Kiakalaieh A, Xia B Q, et al. Cu7S4/M x S y (M=Cd, Ni, and Mn) Janus atomic junctions for plasmonic energy upconversion boosted multi-functional photocatalysis[J]. Advanced Functional Materials, 2023, 33(46): 2304912. |
11 | Jay R M, Banerjee A, Leitner T, et al. Tracking C—H activation with orbital resolution[J]. Science, 2023, 380(6648): 955-960. |
12 | Schmidt-Rohr K, Chen Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes[J]. Nature Materials, 2008, 7: 75-83. |
13 | Sun Y J, Yan Y, Wang Y Y, et al. High proton conduction in a new alkali metal-templated open-framework aluminophosphate[J]. Chemical Communications, 2015, 51(45): 9317-9319. |
14 | Karmakar A, Illathvalappil R, Anothumakkool B, et al. Hydrogen-bonded organic frameworks (HOFs): a new class of porous crystalline proton-conducting materials[J]. Angewandte Chemie International Edition, 2016, 55(36): 10667-10671. |
15 | Ye Y X, Gong L S, Xiang S C, et al. Metal-organic frameworks as a versatile platform for proton conductors[J]. Advanced Materials, 2020, 32(21): e1907090. |
16 | Shi B B, Pang X, Li S N, et al. Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity[J]. Nature Communications, 2022, 13: 6666. |
17 | Gu J, Jiang L L, Ismail S A, et al. Surface protonic conduction on oxide ceramics: mechanism, materials, and method for characterization[J]. Advanced Materials Interfaces, 2023, 10(1): 2201764. |
18 | Tse E C M, Barile C J, Kirchschlager N A, et al. Proton transfer dynamics control the mechanism of O2 reduction by a non-precious metal electrocatalyst[J]. Nature Materials, 2016, 15: 754-759. |
19 | Fang J W, Debnath T, Bhattacharyya S, et al. Photobase effect for just-in-time delivery in photocatalytic hydrogen generation[J]. Nature Communications, 2020, 11: 5179. |
20 | Karaiskakis G, Gavril D. Determination of diffusion coefficients by gas chromatography[J]. Journal of Chromatography. A, 2004, 1037(1/2): 147-189. |
21 | Rohling J H, Shen J, Wang C, et al. Determination of binary diffusion coefficients of gases using photothermal deflection technique[J]. Applied Physics B, 2007, 87(2): 355-362. |
22 | Reitmeier S J, Mukti R R, Jentys A, et al. Surface transport processes and sticking probability of aromatic molecules in HZSM-5[J]. The Journal of Physical Chemistry C, 2008, 112(7): 2538-2544. |
23 | Gobin O C, Reitmeier S J, Jentys A, et al. Diffusion pathways of benzene, toluene and p-xylene in MFI[J]. Microporous and Mesoporous Materials, 2009, 125(1/2): 3-10. |
24 | Teixeira A R, Chang C C, Coogan T, et al. Dominance of surface barriers in molecular transport through silicalite-1[J]. The Journal of Physical Chemistry C, 2013, 117(48): 25545-25555. |
25 | Teixeira A R, Qi X D, Conner W C, et al. 2D surface structures in small zeolite MFI crystals[J]. Chemistry of Materials, 2015, 27(13): 4650-4660. |
26 | Zhang W D, Wu S L, Ren S R, et al. The modeling and experimental studies on the diffusion coefficient of CO2 in saline water[J]. Journal of CO2 Utilization, 2015, 11: 49-53. |
27 | Li S Y, Li Z M, Dong Q W. Diffusion coefficients of supercritical CO2 in oil-saturated cores under low permeability reservoir conditions[J]. Journal of CO2 Utilization, 2016, 14: 47-60. |
28 | He M Y, Zhang K, Guan Y J, et al. Green carbon science: fundamental aspects[J]. National Science Review, 2023, 10(9): nwad046. |
29 | Shih C F, Zhang T, Li J H, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10): 1925-1949. |
30 | Li Z, Li R G, Jing H J, et al. Blocking the reverse reactions of overall water splitting on a Rh/GaN-ZnO photocatalyst modified with Al2O3 [J]. Nature Catalysis, 2023, 6: 80-88. |
31 | Du J, Li F, Sun L C. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction[J]. Chemical Society Reviews, 2021, 50(4): 2663-2695. |
32 | Jia S H, Wu L M, Xu L, et al. Multicomponent catalyst design for CO2/N2/NO x electroreduction[J]. Industrial Chemistry & Materials, 2023, 1(1): 93-105. |
33 | Guo P P, He Z H, Yang S Y, et al. Electrocatalytic CO2 reduction to ethylene over ZrO2/Cu-Cu2O catalysts in aqueous electrolytes[J]. Green Chemistry, 2022, 24(4): 1527-1533. |
34 | 蒲田, 胡建清, 周红军, 等. 炼化工业碳减排路径与电化工/电供能技术发展综述[J]. 石油科学通报, 2023, 8(4): 445-460. |
Pu T, Hu J Q, Zhou H J, et al. Low-carbon pathways and electrochemical/electrification technologies development in the refining-chemical industry: a review[J]. Petroleum Science Bulletin, 2023, 8(4): 445-460. | |
35 | Zhu Z X, Jiang T L, Ali M, et al. Rechargeable batteries for grid scale energy storage[J]. Chemical Reviews, 2022, 122(22): 16610-16751. |
36 | Deng Z N, Jiang H, Hu Y J, et al. Nanospace-confined synthesis of coconut-like SnS/C nanospheres for high-rate and stable lithium-ion batteries[J]. AIChE Journal, 2018, 64(6): 1965-1974. |
37 | Wang B, Iocozzia J, Zhang M, et al. The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells[J]. Chemical Society Reviews, 2019, 48(18): 4854-4891. |
38 | Aboagye D, Djellabi R, Medina F, et al. Radical-mediated photocatalysis for lignocellulosic biomass conversion into value-added chemicals and hydrogen: facts, opportunities and challenges[J]. Angewandte Chemie International Edition, 2023, 62(36): e202301909. |
39 | Qian S S, Wang C S, Liu W J, et al. An enhanced CdS/TiO2 photocatalyst with high stability and activity: effect of mesoporous substrate and bifunctional linking molecule[J]. Journal of Materials Chemistry, 2011, 21(13): 4945-4952. |
40 | Leech M C, Lam K. A practical guide to electrosynthesis[J]. Nature Reviews Chemistry, 2022, 6: 275-286. |
41 | Liu Z H, Wang K, Chen Y, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2 [J]. Nature Catalysis, 2020, 3(3): 274-288. |
42 | Wang Y, Hu Y, Xu J, et al. Immobilization of lipase with a special microstructure in composite hydrophilic CA/hydrophobic PTFE membrane for the chiral separation of racemic ibuprofen[J]. Journal of Membrane Science, 2007, 293(1/2): 133-141. |
43 | Peng Y, Ma L N, Xu P, et al. High-performance production of N-acetyl-D-neuraminic acid with whole cells of fast-growing Vibrio natriegens via a thermal strategy[J]. Journal of Agricultural and Food Chemistry, 2023, 71(50): 20198-20209. |
44 | Hu L Z, Guo S Q, Wang B, et al. Bio-valorization of C1 gaseous substrates into bioalcohols: potentials and challenges in reducing carbon emissions[J]. Biotechnology Advances, 2022, 59: 107954. |
45 | Wei P F, Gao D F, Liu T F, et al. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis[J]. Nature Nanotechnology, 2023, 18: 299-306. |
46 | Prather K L J. Accelerating and expanding nature to address its greatest challenges[J]. Nature Catalysis, 2020, 3: 181-183. |
47 | Cui Z H, Zhang S D, Zhang S Y, et al. Green biomanufacturing promoted by automatic retrobiosynthesis planning and computational enzyme design[J]. Chinese Journal of Chemical Engineering, 2022, 41: 6-21. |
48 | Xie G H, Li P, Zhao Z J, et al. Bacteriorhodopsin-inspired light-driven artificial molecule motors for transmembrane mass transportation[J]. Angewandte Chemie (International Ed. in English), 2018, 57(51): 16708-16712. |
49 | Uehlein N, Lovisolo C, Siefritz F, et al. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions[J]. Nature, 2003, 425: 734-737. |
50 | Burlacot A, Dao O, Auroy P, et al. Alternative photosynthesis pathways drive the algal CO2-concentrating mechanism[J]. Nature, 2022, 605: 366-371. |
51 | Zhang Z, Wen L P, Jiang L. Nanofluidics for osmotic energy conversion[J]. Nature Reviews Materials, 2021, 6: 622-639. |
52 | Guan Q F, Han Z M, Yang K P, et al. Sustainable double-network structural materials for electromagnetic shielding[J]. Nano Letters, 2021, 21(6): 2532-2537. |
53 | Wang W W, Ji Z N, Zhang D L, et al. TiO2 doped HKUST-1/CM film in the three-phase photocatalytic ammonia synthesis system[J]. Ceramics International, 2021, 47(13): 19180-19190. |
54 | Han H J, Yang Y, Liu J F, et al. Effect of Zn vacancies in Zn3In2S6 nanosheets on boosting photocatalytic N2 fixation[J]. ACS Applied Energy Materials, 2020, 3(11): 11275-11284. |
55 | Wei Y, Zhang X, Zhao Z L, et al. Controllable synthesis of P-doped MoS2 nanopetals decorated N-doped hollow carbon spheres towards enhanced hydrogen evolution[J]. Electrochimica Acta, 2019, 297: 553-563. |
56 | Suryanto B H R, Matuszek K, Choi J, et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle[J]. Science, 2021, 372(6547): 1187-1191. |
57 | Zhou W M, Wang Z Q, Huang H Q, et al. Significant enhancement in hydrogen evolution rate of 2D bismuth oxychloride lamellar membrane photocatalyst with cellulose nanofibers[J]. Chemical Engineering Journal, 2023, 456: 140933. |
58 | Liu J X, Li R, Zu X, et al. Photocatalytic conversion of nitrogen to ammonia with water on triphase interfaces of hydrophilic-hydrophobic composite Bi4O5Br2/ZIF-8[J]. Chemical Engineering Journal, 2019, 371: 796-803. |
59 | Oshikiri T, Ueno K, Misawa H. Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation[J]. Angewandte Chemie International Edition, 2016, 55(12): 3942-3946. |
60 | Tan Z, Chen S F, Peng X S, et al. Polyamide membranes with nanoscale turing structures for water purification[J]. Science, 2018, 360(6388): 518-521. |
61 | Nam Y, Lim J H, Ko K C, et al. Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect[J]. Journal of Materials Chemistry A, 2019, 7(23): 13833-13859. |
62 | Shi H N, Long S R, Hu S, et al. Interfacial charge transfer in OD/2D defect-rich heterostructures for efficient solar-driven CO2 reduction[J]. Applied Catalysis B: Environmental, 2019, 245: 760-769. |
63 | Arcus V L, van der Kamp M W, Pudney C R, et al. Enzyme evolution and the temperature dependence of enzyme catalysis[J]. Current Opinion in Structural Biology, 2020, 65: 96-101. |
64 | Brown K A, Harris D F, Wilker M B, et al. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284): 448-450. |
65 | Su Y D, Cestellos-Blanco S, Kim J M, et al. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation[J]. Joule, 2020, 4(4): 800-811. |
66 | Sakimoto K K, Wong A B, Yang P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
67 | Woolerton T W, Sheard S, Reisner E, et al. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light[J]. Journal of the American Chemical Society, 2010, 132(7): 2132-2133.. |
68 | Woolerton T W, Sheard S, Pierce E, et al. CO2 photoreduction at enzyme-modified metal oxide nanoparticles[J]. Energy & Environmental Science, 2011, 4(7): 2393-2399. |
69 | Nichols E M, Gallagher J J, Liu C, et al. Hybrid bioinorganic approach to solar-to-chemical conversion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(37): 11461-11466. |
70 | Liu C, Gallagher J J, Sakimoto K K, et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals[J]. Nano Letters, 2015, 15(5): 3634-3639. |
71 | Huang X Q, Wang B J, Wang Y J, et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation[J]. Nature, 2020, 584: 69-74. |
72 | Wang X D, Saba T, Yiu H H P, et al. Cofactor NAD(P)H regeneration inspired by heterogeneous pathways[J]. Chem, 2017, 2(5): 621-654. |
73 | Zhang S H, Shi J F, Sun Y Y, et al. Artificial thylakoid for the coordinated photoenzymatic reduction of carbon dioxide[J]. ACS Catalysis, 2019, 9(5): 3913-3925. |
74 | Zhang S H, Zhang Y S, Chen Y, et al. Metal hydride-embedded titania coating to coordinate electron transfer and enzyme protection in photo-enzymatic catalysis[J]. ACS Catalysis, 2021, 11(1): 476-483. |
75 | Cai Z Y, Shi J F, Wu Y Z, et al. Chloroplast-inspired artificial photosynthetic capsules for efficient and sustainable enzymatic hydrogenation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 17114-17123. |
76 | Sun Y Y, Shi J F, Wang Z, et al. Thylakoid membrane-inspired capsules with fortified cofactor shuttling for enzyme-photocoupled catalysis[J]. Journal of the American Chemical Society, 2022, 144(9): 4168-4177. |
77 | Fu H G, Cao J Z, Qiao T Z, et al. An asymmetric sp3-sp3 cross-electrophile coupling using 'ene'-reductases[J]. Nature, 2022, 610: 302-307. |
78 | Jiang R K, Xue X, Zhao F, et al. Process parameter and kinetic study for the azidation of a zidovudine intermediate with sodium azide in microreactors[J]. Chemical Engineering Journal, 2022, 429: 132207. |
79 | Yao S T, Liao Y, Pan R Z, et al. Programmed co-assembly of DNA-peptide hybrid microdroplets by phase separation[J]. Chinese Chemical Letters, 2022, 33(3): 1545-1549. |
80 | Zhu Y C, Xu J, Zhang H Y, et al. A micro gas chromatography column fabricated by ultrafast laser-assisted chemical etching[J]. Sensors and Actuators B: Chemical, 2023, 375: 132814. |
81 | Mo Y M, Lu Z H, Rughoobur G, et al. Microfluidic electrochemistry for single-electron transfer redox-neutral reactions[J]. Science, 2020, 368(6497): 1352-1357. |
82 | Kang J, Zhou L, Duan X G, et al. Degradation of cosmetic microplastics via functionalized carbon nanosprings[J]. Matter, 2019, 1(3): 745-758. |
83 | Xia C, Xia Y, Zhu P, et al. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte[J]. Science, 2019, 366(6462): 226-231. |
84 | Yang L J, Shui J L, Du L, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future[J]. Advanced Materials, 2019, 31(13), e1804799. |
85 | Zeng T, Gautam R P, Barile C J, et al. Nitrile-facilitated proton transfer for enhanced oxygen reduction by hybrid electrocatalysts[J]. ACS Catalysis, 2020, 10(21): 13149-13155. |
[1] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
[2] | Guoyi XIAN, Lifang CHEN, Zhiwen QI. DFT-based study of liquid-phase Beckmann rearrangement mechanism of cyclohexanone oxime [J]. CIESC Journal, 2024, 75(1): 302-311. |
[3] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Yang WANG, Yongqiang DAI, Wei ZENG. Study of the enhanced thermoelectric properties of ionic hydrogel materials by 2,5-dihydroxybenzenesulfonate [J]. CIESC Journal, 2023, 74(9): 3946-3955. |
[7] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[8] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[9] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[10] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[11] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[12] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[13] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[14] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[15] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||