CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1198-1208.DOI: 10.11949/0438-1157.20231253
• Reviews and monographs • Previous Articles Next Articles
Yiwei FAN(), Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG()
Received:
2023-12-04
Revised:
2024-02-08
Online:
2024-06-06
Published:
2024-04-25
Contact:
Jisong ZHANG
通讯作者:
张吉松
作者简介:
范以薇(1999—),女,博士研究生,fanyw22@mails.tsinghua.edu.cn
基金资助:
CLC Number:
Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier[J]. CIESC Journal, 2024, 75(4): 1198-1208.
范以薇, 刘威, 李盈盈, 王培霞, 张吉松. 有机液体储氢中全氢化乙基咔唑催化脱氢研究进展[J]. 化工学报, 2024, 75(4): 1198-1208.
Add to citation manager EndNote|Ris|BibTeX
性质 | NEC | 12H-NEC |
---|---|---|
熔点 | 68℃ | <20℃ |
沸点 | 270℃ | 280℃ |
密度(25℃) | 1.10 g/cm3 | 0.94 g/cm3 |
动力黏度(20℃) | 121 mPa∙s | 5.9 mPa∙s |
比热容(25℃) | 221.6 J/(K·mol) | 352.3 J/(K·mol) |
标准摩尔生成焓, | (167.7±2.8) kJ/mol | (-151.4±4.4) kJ/mol |
危险等级 | 08 | — |
Table 1 Physicochemical properties of NEC and 12H-NEC[39-40]
性质 | NEC | 12H-NEC |
---|---|---|
熔点 | 68℃ | <20℃ |
沸点 | 270℃ | 280℃ |
密度(25℃) | 1.10 g/cm3 | 0.94 g/cm3 |
动力黏度(20℃) | 121 mPa∙s | 5.9 mPa∙s |
比热容(25℃) | 221.6 J/(K·mol) | 352.3 J/(K·mol) |
标准摩尔生成焓, | (167.7±2.8) kJ/mol | (-151.4±4.4) kJ/mol |
危险等级 | 08 | — |
Entry | 催化剂 | 反应条件 | 循环次数 | 稳定性 | 文献 |
---|---|---|---|---|---|
1 | PdCoO x /Zr-C3N4 | 50%①, 140℃ | 3 | 98%② | [ |
2 | Pd/rGO-EG | 15.5%, 180℃ | 5 | 85%② | [ |
3 | Pd-EU/K6 | 15%, 190℃ | 11 | 93%③ | [ |
4 | Pd/rGO | 7%, 180℃ | 5 | 86%② | [ |
5 | Pd-IP/S15 | 20%, 180℃ | 8 | 77%③ | [ |
6 | Pd/MgAl2O4 | 6.7%, 180℃ | 3 | 98%② | [ |
7 | Pd/LDHs-us | 7%, 180℃ | 6 | 95%③ | [ |
8 | Pt/S-Ti3C2T x | 6.7%, 180℃ | 6 | 98%③ | [ |
Table 2 Stability of 12H-NEC dehydrogenation catalysts
Entry | 催化剂 | 反应条件 | 循环次数 | 稳定性 | 文献 |
---|---|---|---|---|---|
1 | PdCoO x /Zr-C3N4 | 50%①, 140℃ | 3 | 98%② | [ |
2 | Pd/rGO-EG | 15.5%, 180℃ | 5 | 85%② | [ |
3 | Pd-EU/K6 | 15%, 190℃ | 11 | 93%③ | [ |
4 | Pd/rGO | 7%, 180℃ | 5 | 86%② | [ |
5 | Pd-IP/S15 | 20%, 180℃ | 8 | 77%③ | [ |
6 | Pd/MgAl2O4 | 6.7%, 180℃ | 3 | 98%② | [ |
7 | Pd/LDHs-us | 7%, 180℃ | 6 | 95%③ | [ |
8 | Pt/S-Ti3C2T x | 6.7%, 180℃ | 6 | 98%③ | [ |
1 | Ummenhofer C C, Meehl G A. Extreme weather and climate events with ecological relevance: a review[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2017, 372(1723): 20160135. |
2 | Wu X H, Tian Z Q, Guo J. A review of the theoretical research and practical progress of carbon neutrality[J]. Sustainable Operations and Computers, 2022, 3: 54-66. |
3 | 解振华, 何建坤, 王海林, 等. 《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口·资源与环境, 2020, 30(11): 1-25. |
Xie Z H, He J K, Wang H L, et al. Comprehensive report on China's long-term low-carbon development strategy and transformation path[J]. China Population, Resources and Environment, 2020, 30(11): 1-25. | |
4 | 何建坤. 碳达峰碳中和目标导向下能源和经济的低碳转型[J]. 环境经济研究, 2021, 6(1): 1-9. |
He J K. Low carbon transformation of energy and economy aiming for the peaking of carbon emission and carbon neutrality[J]. Journal of Environmental Economics, 2021, 6(1): 1-9. | |
5 | Xie Y C, Qi J G, Zhang R, et al. Toward a carbon-neutral state: a carbon-energy-water nexus perspective of China's coal power industry[J]. Energies, 2022, 15(12): 4466. |
6 | 周孝信, 赵强, 张玉琼. “双碳”目标下我国能源电力系统发展前景和关键技术[J]. 中国电力企业管理, 2021, 31: 14-17. |
Zhou X X, Zhao Q, Zhang Y Q. Development prospect and key technologies of China's energy and power system under the carbon peaking and carbon neutrality goals[J]. China Power Enterprise Management, 2021, 31: 14-17. | |
7 | Shi X F, Qian Y, Yang S Y. Fluctuation analysis of a complementary wind-solar energy system and integration for large scale hydrogen production[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7097-7110. |
8 | Albertus P, Manser J S, Litzelman S. Long-duration electricity storage applications, economics, and technologies[J]. Joule, 2020, 4(1): 21-32. |
9 | Liu F, Shi C X, Guo X L, et al. Rational design of better hydrogen evolution electrocatalysts for water splitting: a review[J]. Advanced Science, 2022, 9(18): e2200307. |
10 | Sharma S, Ghoshal S K. Hydrogen the future transportation fuel: from production to applications[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 1151-1158. |
11 | Liu W G, Zuo H B, Wang J S, et al. The production and application of hydrogen in steel industry[J]. International Journal of Hydrogen Energy, 2021, 46(17): 10548-10569. |
12 | Meda U S, Bhat N, Pandey A, et al. Challenges associated with hydrogen storage systems due to the hydrogen embrittlement of high strength steels[J]. International Journal of Hydrogen Energy, 2023, 48(47): 17894-17913. |
13 | Abe J O, Popoola A P I, Ajenifuja E, et al. Hydrogen energy, economy and storage: review and recommendation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15072-15086. |
14 | Salman M S, Rambhujun N, Pratthana C, et al. Catalysis in liquid organic hydrogen storage: recent advances, challenges, and perspectives[J]. Industrial & Engineering Chemistry Research, 2022, 61(18): 6067-6105. |
15 | Xu Z, Zhao N, Hillmansen S, et al. Techno-economic analysis of hydrogen storage technologies for railway engineering: a review[J]. Energies, 2022, 15(17): 6467. |
16 | Laureys A, Depraetere R, Cauwels M, et al. Use of existing steel pipeline infrastructure for gaseous hydrogen storage and transport: a review of factors affecting hydrogen induced degradation[J]. Journal of Natural Gas Science and Engineering, 2022, 101: 104534. |
17 | 王鑫, 陈叔平, 朱鸣. 液氢储运技术发展现状与展望[J]. 太阳能学报, 2024, 45(1): 500-514. |
Wang X, Chen S P, Zhu M. Development status and prospect of liquid hydrogen storage and transportation technology[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 500-514. | |
18 | Qiu Y N, Yang H, Tong L G, et al. Research progress of cryogenic materials for storage and transportation of liquid hydrogen[J]. Metals, 2021, 11(7): 1101. |
19 | 应强, 李建立, 段秉言, 等. 金属氢化物储放氢反应器研究进展[J]. 北京石油化工学院学报, 2023, 31(4): 12-21. |
Ying Q, Li J L, Duan B Y, et al. Recent developments in metal hydride hydrogen storage and desorption reactor[J]. Journal of Beijing Institute of Petrochemical Technology, 2023, 31(4): 12-21. | |
20 | Sreeraj R, Aadhithiyan A K, Anbarasu S. Integration of thermal augmentation methods in hydride beds for metal hydride based hydrogen storage systems: review and recommendation[J]. Journal of Energy Storage, 2022, 52: 105039. |
21 | Anshul G, Baron Gino V, Patrice P, et al. Hydrogen clathrates: next generation hydrogen storage materials[J]. Energy Storage Materials, 2021, 41: 69-107. |
22 | Sekine Y, Higo T. Recent trends on the dehydrogenation catalysis of liquid organic hydrogen carrier (LOHC): a review[J]. Topics in Catalysis, 2021, 64(7): 470-480. |
23 | Ge L X, Qiu M H, Zhu Y F, et al. Synergistic catalysis of Ru single-atoms and zeolite boosts high-efficiency hydrogen storage[J]. Applied Catalysis B: Environmental, 2022, 319: 121958. |
24 | Modisha P, Bessarabov D. Aromatic liquid organic hydrogen carriers for hydrogen storage and release[J]. Current Opinion in Green and Sustainable Chemistry, 2023, 42: 100820. |
25 | Ratnakar R R, Gupta N, Zhang K, et al. Hydrogen supply chain and challenges in large-scale LH2 storage and transportation[J]. International Journal of Hydrogen Energy, 2021, 46(47): 24149-24168. |
26 | Liu J J, Ma Y, Yang J G, et al. Recent advance of metal borohydrides for hydrogen storage[J]. Frontiers in Chemistry, 2022, 10: 945208. |
27 | 闫光龙, 郭克星, 赵苗苗. 储氢技术的研究现状及进展[J]. 天然气与石油, 2023, 41(5): 1-9. |
Yan G L, Guo K X, Zhao M M. Status and progress on hydrogen storage technology research[J]. Natural Gas and Oil, 2023, 41(5): 1-9. | |
28 | Zhu Q L, Xu Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage[J]. Energy & Environmental Science, 2015, 8(2): 478-512. |
29 | Wang C L, Astruc D. Recent developments of nanocatalyzed liquid-phase hydrogen generation[J]. Chemical Society Reviews, 2021, 50(5): 3437-3484. |
30 | Imada T, Chiku M, Higuchi E, et al. Effect of rhodium modification on activity of platinum nanoparticle-loaded carbon catalysts for electrochemical toluene hydrogenation[J]. ACS Catalysis, 2020, 10(22): 13718-13728. |
31 | Oda A, Fujita T, Yamamoto Y, et al. Breaking the structure-activity relationship in toluene hydrogenation catalysis by designing heteroatom ensembles based on a single-atom alloying approach[J]. ACS Catalysis, 2023, 13(15): 10026-10040. |
32 | Meng J C, Zhou F, Ma H X, et al. A review of catalysts for methylcyclohexane dehydrogenation[J]. Topics in Catalysis, 2021, 64(7): 509-520. |
33 | Jorschick H, Preuster P, Dürr S, et al. Hydrogen storage using a hot pressure swing reactor[J]. Energy & Environmental Science, 2017, 10(7): 1652-1659. |
34 | Shi L B, Zhou Y M, Qi S T, et al. Pt catalysts supported on H2 and O2 plasma-treated Al2O3 for hydrogenation and dehydrogenation of the liquid organic hydrogen carrier pair dibenzyltoluene and perhydrodibenzyltoluene[J]. ACS Catalysis, 2020, 10(18): 10661-10671. |
35 | Modisha P, Gqogqa P, Garidzirai R, et al. Evaluation of catalyst activity for release of hydrogen from liquid organic hydrogen carriers[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21926-21935. |
36 | Zhou L, Sun L, Xu L X, et al. Recent developments of effective catalysts for hydrogen storage technology using N-ethylcarbazole[J]. Catalysts, 2020, 10(6): 648. |
37 | Singh R, Singh M, Gautam S. Hydrogen economy, energy, and liquid organic carriers for its mobility[J]. Materials Today: Proceedings, 2021, 46: 5420-5427. |
38 | Wei D, Shi X Z, Qu R Y, et al. Toward a hydrogen economy: development of heterogeneous catalysts for chemical hydrogen storage and release reactions[J]. ACS Energy Letters, 2022, 7(10): 3734-3752. |
39 | Niermann M, Beckendorff A, Kaltschmitt M, et al. Liquid organic hydrogen carrier (LOHC)—assessment based on chemical and economicproperties[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6631-6654. |
40 | Stark K, Emel'yanenko V N, Zhabina A A, et al. Liquid organic hydrogen carriers: thermophysical and thermochemical studies of carbazole partly and fully hydrogenated derivatives[J]. Industrial & Engineering Chemistry Research, 2015, 54(32): 7953-7966. |
41 | Byun M, Lee A, Cheon S, et al. Preliminary feasibility study for hydrogen storage using several promising liquid organic hydrogen carriers: technical, economic, and environmental perspectives[J]. Energy Conversion and Management, 2022, 268: 116001. |
42 | Yang M, Han C Q, Ni G, et al. Temperature controlled three-stage catalytic dehydrogenation and cycle performance of perhydro-9-ethylcarbazole[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12839-12845. |
43 | Pei Q J, Yu J F, Qiu G H, et al. Fabrication of ultrafine metastable Ru-B alloy for catalytic hydrogenation of NEC at room temperature[J]. Applied Catalysis B: Environmental, 2023, 336: 122947. |
44 | Wu Y, Yu H E, Guo Y R, et al. A rare earth hydride supported ruthenium catalyst for the hydrogenation of N-heterocycles: boosting the activity via a new hydrogen transfer path and controlling the stereoselectivity[J]. Chemical Science, 2019, 10(45): 10459-10465. |
45 | Li X X, Wu F, Zhou W H, et al. Low-temperature dehydrogenation of dodecahydro-N-ethylcarbazole catalyzed by PdCo bimetallic oxide[J]. Chemical Engineering Science, 2023, 273: 118650. |
46 | Wang B, Chang T Y, Jiang Z, et al. Component controlled synthesis of bimetallic PdCu nanoparticles supported on reduced graphene oxide for dehydrogenation of dodecahydro-N-ethylcarbazole[J]. Applied Catalysis B: Environmental, 2019, 251(15): 261-272. |
47 | Li J J, Tong F Y, Li Y, et al. Dehydrogenation of dodecahydro-N-ethylcarbazole over spinel supporting catalyst in a continuous flow fixed bed reactor[J]. Fuel, 2022, 321: 124034. |
48 | Dong Y, Yang M, Mei P, et al. Dehydrogenation kinetics study of perhydro-N-ethylcarbazole over a supported Pd catalyst for hydrogen storage application[J]. International Journal of Hydrogen Energy, 2016, 41(20): 8498-8505. |
49 | Wang B, Li P Y, Wang S Y, et al. Tuning the interaction between Pd and MgAl2O4 to enhance the dehydrogenation activity and selectivity of dodecahydro-N-ethylcarbazole[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(14): 5485-5494. |
50 | Sotoodeh F, Smith K J. Kinetics of hydrogen uptake and release from heteroaromatic compounds for hydrogen storage[J]. Industrial & Engineering Chemistry Research, 2010, 49(3): 1018-1026. |
51 | Sobota M, Nikiforidis I, Amende M, et al. Dehydrogenation of dodecahydro-N-ethylcarbazole on Pd/Al2O3 model catalysts[J]. Chemistry, 2011, 17(41): 11542-11552. |
52 | Amende M, Schernich S, Sobota M, et al. Dehydrogenation mechanism of liquid organic hydrogen carriers: dodecahydro-N-ethylcarbazole on Pd(111)[J]. Chemistry, 2013, 19(33): 10854-10865. |
53 | Yang M, Dong Y, Fei S X, et al. A comparative study of catalytic dehydrogenation of perhydro-N-ethylcarbazole over noble metal catalysts[J]. International Journal of Hydrogen Energy, 2014, 39: 18976-18983. |
54 | Wang B, Chang T Y, Jiang Z, et al. Catalytic dehydrogenation study of dodecahydro-N-ethylcarbazole by noble metal supported on reduced graphene oxide[J]. International Journal of Hydrogen Energy, 2018, 43(15): 7317-7325. |
55 | Peters W, Seidel A, Herzog S, et al. Macrokinetic effects in perhydro-N-ethylcarbazole dehydrogenation and H2 productivity optimization by using egg-shell catalysts[J]. Energy & Environmental Science, 2015, 8(10): 3013-3021. |
56 | Feng Z L, Chen X M, Bai X F. Hydrogen production from the catalytic dehydrogenation of dodecahydro-N-ethylcarbazole: effect of Pd precursor on the catalytic performance of Pd/C catalysts[J]. Environmental Science and Pollution Research, 2021, 28(43): 61623-61635. |
57 | Guo Y, Wang M L, Zhu Q J, et al. Ensemble effect for single-atom, small cluster and nanoparticle catalysts[J]. Nature Catalysis, 2022, 5: 766-776. |
58 | Dong C Y, Gao Z R, Li Y L, et al. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles[J]. Nature Catalysis, 2022, 5: 485-493. |
59 | Wang B, Chen Y T, Chang T Y, et al. Facet-dependent catalytic activities of Pd/rGO: exploring dehydrogenation mechanism of dodecahydro-N-ethylcarbazole[J]. Applied Catalysis B: Environmental, 2020, 266: 118658. |
60 | Feng Z L, Chen X M, Bai X F. Catalytic dehydrogenation of liquid organic hydrogen carrier dodecahydro-N-ethylcarbazole over palladium catalysts supported on different supports[J]. Environmental Science and Pollution Research, 2020, 27(29): 36172-36185. |
61 | Wang B, Yan T, Chang T Y, et al. Palladium supported on reduced graphene oxide as a high-performance catalyst for the dehydrogenation of dodecahydro-N-ethylcarbazole[J]. Carbon, 2017, 122: 9-18. |
62 | Feng Z L, Bai X F. 3D-mesoporous KIT-6 supported highly dispersed Pd nanocatalyst for dodecahydro-N-ethylcarbazole dehydrogenation[J]. Microporous and Mesoporous Materials, 2022, 335: 111789. |
63 | Yang Z W, Gong X, Li L S, et al. Strengthening the metal-support interaction over Pt/SiO2-TiO(OH)2 by defect engineering for efficient dehydrogenation of dodecahydro-N-ethylcarbazole[J]. Fuel, 2023, 334: 126733. |
64 | Jiang Z, Gong X, Guo S Y, et al. Engineering PdCu and PdNi bimetallic catalysts with adjustable alloying degree for the dehydrogenation reaction of dodecahydro-N-ethylcarbazole[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2376-2389. |
65 | Feng Z L, Liu Z T, Bai X F. Preparation of Ni@Pd core-shell nanoparticles supported on KIT-6 by ultrasound-assisted galvanic replacement for dodecahydro-N-ethylcarbazole dehydrogenation[J]. Inorganic Chemistry, 2023, 62(35): 14355-14367. |
66 | Forberg D, Schwob T, Zaheer M, et al. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia[J]. Nature Communications, 2016, 7: 13201. |
67 | Xue W J, Liu H X, Mao B H, et al. Reversible hydrogenation and dehydrogenation of N-ethylcarbazole over bimetallic Pd-Rh catalyst for hydrogen storage[J]. Chemical Engineering Journal, 2021, 421: 127781. |
68 | Feng Z L, Wang Y D, Bai X F. Preparation of highly dispersed Pd/SBA-15 catalysts for dodecahydro-N-ethylcarbazole dehydrogenation reaction by ion exchange-glow discharge[J]. Environmental Science and Pollution Research, 2022, 29(26): 39266-39280. |
69 | Wu Y P, Liu X R, Bai X F, et al. Ultrasonic-assisted preparation of ultrafine Pd nanocatalysts loaded on Cl--intercalated MgAl layered double hydroxides for the catalytic dehydrogenation of dodecahydro-N-ethylcarbazole[J]. Ultrasonics Sonochemistry, 2022, 88: 106097. |
70 | Li L S, Gong X, Yang Z W, et al. Boosting the dehydrogenation efficiency of dodecahydro-N-ethylcarbazole by assembling Pt nanoparticles on the single-layer Ti3C2T x MXene[J]. International Journal of Hydrogen Energy, 2023, 48(51): 19633-19645. |
71 | Stephan K, Daniel L, Andreas B, et al. Dehydrogenation of perhydro-N-ethylcarbazole under reduced total pressure[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15660-15670. |
72 | Heublein N, Stelzner M, Sattelmayer T. Hydrogen storage using liquid organic carriers: equilibrium simulation and dehydrogenation reactor design[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24902-24916. |
73 | Wan C, An Y, Xu G H, et al. Study of catalytic hydrogenation of N-ethylcarbazole over ruthenium catalyst[J]. International Journal of Hydrogen Energy, 2012, 37(17): 13092-13096. |
74 | 薛景文, 于鹏飞, 张彦康, 等. 液态有机氢载体储氢系统脱氢反应器研究进展[J]. 热力发电, 2022, 51(11): 1-10. |
Xue J W, Yu P F, Zhang Y K, et al. Review on advances of dehydrogenation reactor for hydrogen storage system using liquid organic hydrogen carrier[J]. Thermal Power Generation, 2022, 51(11): 1-10. | |
75 | Wild J V, Friedrich T, Cooper A, et al. Liquid organic hydrogen carriers (LOHC): an auspicious alternative to conventional hydrogen storage technologies[C]//Stolten D, Thomas G. 18th World Hydrogen Energy Conference 2010. Storage systems/policy perspectives, initiatives and cooperations. Essen, Germany: Forschungszentrum Jülich GmbH, Zentralbibliothek, 2010: 189-197. |
76 | Peters W, Eypasch M, Frank T, et al. Efficient hydrogen release from perhydro-N-ethylcarbazole using catalyst-coated metallic structures produced by selective electron beam melting[J]. Energy & Environmental Science, 2015, 8(2): 641-649. |
77 | Gora A, Tanaka D A P, Mizukami F, et al. Lower temperature dehydrogenation of methylcyclohexane by membrane-assisted equilibrium shift[J]. Chemistry Letters, 2006, 35(12): 1372-1373. |
78 | Kreuder H, Boeltken T, Cholewa M, et al. Heat storage by the dehydrogenation of methylcyclohexane—experimental studies for the design of a microstructured membrane reactor[J]. International Journal of Hydrogen Energy, 2016, 41(28): 12082-12092. |
79 | Shukla A, Pande J V, Biniwale R B. Dehydrogenation of methylcyclohexane over Pt/V2O5 and Pt/Y2O3 for hydrogen delivery applications[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3350-3357. |
80 | Santacesaria E, Tesser R, Di Serio M, et al. A new simple microchannel device to test process intensification[J]. Industrial & Engineering Chemistry Research, 2011, 50(5): 2569-2575. |
81 | 武汉氢阳能源有限公司. 氢能利用整体解决方案[EB/OL]. [2024-03-07]. . |
Wuhan Hynertech Co., Ltd. Integrated solution for hydrogen utilization[EB/OL]. [2024-03-07]. . | |
82 | 高蒙. 推动绿色低碳转型发展 打造氢能科创之都产业聚集高地[EB/OL]. [2024-03-07]. . |
Gao M. Promote the transformation and development of green and low-carbon industries, and build a highland for hydrogen energy science and technology innovation. [2024-03-07]. . | |
83 | 辛友. 有机液态储氢商业化“升温”[EB/OL]. [2024-03-07]. . |
Xin Y. The commercialization of organic liquid hydrogen storage is heating up[EB/OL]. [2024-03-07]. . |
[1] | Yunxuan LI, Xinyue LIU, Xi CHEN, Wen LIU, Mingyue ZHOU, Xingying LAN. Energy storage technologies based on solid-liquid redox-targeting reactions: materials, devices, and kinetics [J]. CIESC Journal, 2024, 75(4): 1222-1240. |
[2] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
[3] | Anran XU, Kai LIU, Na WANG, Zhenyu ZHAO, Hong LI, Xin GAO. Strong wave-absorbing catalyst cooperates with microwave energy to enhance fructose dehydration to produce 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1565-1577. |
[4] | Xiaoqing YAN, Ying ZHAO, Yuzhe ZHANG, Honghui OU, Qizhong HUANG, Huagui HU, Guidong YANG. Preparation of five-fold twinned copper nanowires@polypyrrole and their electrocatalytic conversion of nitrate to ammonia [J]. CIESC Journal, 2024, 75(4): 1519-1532. |
[5] | Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling [J]. CIESC Journal, 2024, 75(4): 1284-1301. |
[6] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
[7] | Xiao XUE, Minjing SHANG, Yuanhai SU. Advances on continuous-flow synthesis of drugs in microreactors [J]. CIESC Journal, 2024, 75(4): 1439-1454. |
[8] | Yu HAN, Le ZHOU, Xin ZHANG, Yong LUO, Baochang SUN, Haikui ZOU, Jianfeng CHEN. Preparation of high adhesion Pd/SiO2/NF monolithic catalyst and its hydrogenation performance [J]. CIESC Journal, 2024, 75(4): 1533-1542. |
[9] | Xiaokai CHENG, Wei LI, Jingdai WANG, Yongrong YANG. Advances in nickel catalyzed controlled/living radical polymerization reactions [J]. CIESC Journal, 2024, 75(4): 1105-1117. |
[10] | Ang LI, Zhenyu ZHAO, Hong LI, Xin GAO. Microwave induced construction of highly dispersed Pd/FeP catalysts and their electrocatalytic performance [J]. CIESC Journal, 2024, 75(4): 1594-1606. |
[11] | Zhiming CHEN, Zefeng WANG, Gaoqi MA, Liangbo WANG, Chengtao YU, Pengju PAN. Research progress on improving thermal stability of polylactic acid based on stannous inactivation and chain end-group modification [J]. CIESC Journal, 2024, 75(3): 760-767. |
[12] | Jiaqi WANG, Haoqi WEI, Ajing GOU, Jiaxing LIU, Xinlin ZHOU, Kun GE. Study on the formation mechanism of CO2 hydrate under the action of nanoparticles [J]. CIESC Journal, 2024, 75(3): 956-966. |
[13] | Yuexing WEI, Ziyue HE, Kezhou YAN, Linyu LI, Yuhong QIN, Chong HE, Luchang JIAO. Catalytic degradation of bisphenol A by modified coal gasification slag [J]. CIESC Journal, 2024, 75(3): 877-889. |
[14] | Zhaoxiang ZHANG, Maokun CAI, Zhiying REN, Xiaohong JIA, Fei GUO. Numerical analysis of the effect of temperature and its fluctuations on the vulcanization process of rubber seals [J]. CIESC Journal, 2024, 75(2): 715-726. |
[15] | Xueyun WANG, Xiaobing YU, Wanwang PENG, Yansong SHEN. Numerical study on combustion zone behaviors of a slagging gasifier [J]. CIESC Journal, 2024, 75(2): 659-674. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||