CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4462-4473.DOI: 10.11949/0438-1157.20250350
• Special Column: Modeling and Simulation in Process Engineering • Previous Articles Next Articles
Jiaqi XU1,2(
), Wenjun ZHANG2(
), Yanping YU1, Baogen SU1,2, Qilong REN1,2, Qiwei YANG1,2(
)
Received:2025-04-07
Revised:2025-06-21
Online:2025-10-23
Published:2025-09-25
Contact:
Wenjun ZHANG, Qiwei YANG
徐佳琪1,2(
), 张文君2(
), 余燕萍1, 苏宝根1,2, 任其龙1,2, 杨启炜1,2(
)
通讯作者:
张文君,杨启炜
作者简介:徐佳琪(2000—),女,硕士研究生,22260345@zju.edu.cn
基金资助:CLC Number:
Jiaqi XU, Wenjun ZHANG, Yanping YU, Baogen SU, Qilong REN, Qiwei YANG. Numerical simulation and experimental study of the conversion of refinery gas to syngas via thermal plasma[J]. CIESC Journal, 2025, 76(9): 4462-4473.
徐佳琪, 张文君, 余燕萍, 苏宝根, 任其龙, 杨启炜. 热等离子体重整炼厂气制合成气过程数值模拟与实验研究[J]. 化工学报, 2025, 76(9): 4462-4473.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Schematic diagram of the experimental process of reforming1—cathode; 2—DC power supply; 3—anode; 4—magnetic coils; 5—heat exchanger; 6—gas chromatography
| 气体 | 体积分数/% | 气体 | 体积分数/% |
|---|---|---|---|
| H2 | 18.93 | C3H8 | 1.35 |
| CH4 | 46.49 | C3H6 | 0.32 |
| C2H6 | 15.72 | C4H10 | 0.37 |
| C2H4 | 0.89 | N2 | 14.05 |
| CO2 | 1.20 |
Table 1 Main composition and content of refinery gas
| 气体 | 体积分数/% | 气体 | 体积分数/% |
|---|---|---|---|
| H2 | 18.93 | C3H8 | 1.35 |
| CH4 | 46.49 | C3H6 | 0.32 |
| C2H6 | 15.72 | C4H10 | 0.37 |
| C2H4 | 0.89 | N2 | 14.05 |
| CO2 | 1.20 |
| [1] | Tagliapietra S, Zachmann G, Edenhofer O, et al. The European union energy transition: key priorities for the next five years[J]. Energy Policy, 2019, 132: 950-954. |
| [2] | Shao T M, Pan X Z, Li X, et al. China's industrial decarbonization in the context of carbon neutrality: a sub-sectoral analysis based on integrated modelling[J]. Renewable and Sustainable Energy Reviews, 2022, 170: 112992. |
| [3] | Liu P K, Zhao R Q, Han X. Assessing the efficiency and the justice of energy transformation for the United States of America, China, and the European Union[J]. Sustainable Development, 2023, 31(5): 3387-3407. |
| [4] | Wen L, Diao P X. Simulation study on carbon emission of China's electricity supply and demand under the dual-carbon target[J]. Journal of Cleaner Production, 2022, 379: 134654. |
| [5] | Cai W, Lai K H, Liu C H, et al. Promoting sustainability of manufacturing industry through the lean energy-saving and emission-reduction strategy[J]. Science of The Total Environment, 2019, 665: 23-32. |
| [6] | Zhao S J, Song Q B, Liu L L, et al. Uncovering the lifecycle carbon emissions and its reduction pathways: a case study of petroleum refining enterprise[J]. Energy Conversion and Management, 2024, 301: 118048. |
| [7] | Li Z X, Åhman M, Nilsson L J, et al. Towards carbon neutrality: transition pathways for the Chinese ethylene industry[J]. Renewable and Sustainable Energy Reviews, 2024, 199: 114540. |
| [8] | Pawar V, Ray D, Subrahmanyam C, et al. Study of short-term catalyst deactivation due to carbon deposition during biogas dry reforming on supported Ni catalyst[J]. Energy & Fuels, 2015, 29(12): 8047-8052. |
| [9] | Zambrano D, Soler J, Herguido J, et al. Kinetic study of dry reforming of methane over Ni–Ce/Al2O3 catalyst with deactivation[J]. Topics in Catalysis, 2019, 62(5): 456-466. |
| [10] | Takahashi Y, Yamazaki T. Behavior of high-pressure CH4/CO2 reforming reaction over mesoporous Pt/ZrO2 catalyst[J]. Fuel, 2012, 102: 239-246. |
| [11] | Tu X, Whitehead J C. Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature[J]. Applied Catalysis B: Environmental, 2012, 125: 439-448. |
| [12] | Fidalgo B, Menéndez J A. Study of energy consumption in a laboratory pilot plant for the microwave-assisted CO2 reforming of CH4 [J]. Fuel Processing Technology, 2012, 95: 55-61. |
| [13] | Zeng Y X, Zhu X B, Mei D H, et al. Plasma-catalytic dry reforming of methane over γ-Al2O3 supported metal catalysts[J]. Catalysis Today, 2015, 256: 80-87. |
| [14] | Chung W C, Chang M B. Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 13-31. |
| [15] | Delikonstantis E, Scapinello M, Stefanidis G D. Investigating the plasma-assisted and thermal catalytic dry methane reforming for syngas production: process design, simulation and evaluation[J]. Energies, 2017, 10(9): 1429. |
| [16] | Andersen J A, Christensen J M, Østberg M, et al. Plasma-catalytic dry reforming of methane: screening of catalytic materials in a coaxial packed-bed DBD reactor[J]. Chemical Engineering Journal, 2020, 397: 125519. |
| [17] | Sun J T, Chen Q, Qin W Y, et al. Plasma-catalytic dry reforming of CH4: effects of plasma-generated species on the surface chemistry[J]. Chemical Engineering Journal, 2024, 498: 155847. |
| [18] | Bhuiyan S I, Kraus J, Hil Baky M A, et al. Greenhouse gas emission reduction and energy impact of electrifying upgraders in refineries using plasma processing technology[J]. Sustainable Energy & Fuels, 2023, 7(9): 2178-2199. |
| [19] | Sanlisoy A, Ozdinc Carpinlioglu M. Microwave plasma gasification of a variety of fuel for syngas production[J]. Plasma Chemistry and Plasma Processing, 2019, 39(5): 1211-1225. |
| [20] | Hrabovsky M, Hlina M, Kopecky V, et al. Steam plasma treatment of organic substances for hydrogen and syngas production[J]. Plasma Chemistry and Plasma Processing, 2017, 37(3): 739-762. |
| [21] | Yan B H, Wang Q, Jin Y, et al. Dry reforming of methane with carbon dioxide using pulsed DC arc plasma at atmospheric pressure[J]. Plasma Chemistry and Plasma Processing, 2010, 30(2): 257-266. |
| [22] | Lu T F, Law C K. A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with NO chemistry[J]. Combustion and Flame, 2008, 154(4): 761-774. |
| [23] | Wang H, Frenklach M. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames[J]. Combustion and Flame, 1997, 110(1/2): 173-221. |
| [24] | 王佳杰, 毛震波, 李军, 等. 等离子体CO2-CH4干重整反应技术进展[J]. 低碳化学与化工, 2023, 48(3): 78-88. |
| Wang J J, Mao Z B, Li J, et al. Progress in plasma-driven dry reforming of CO2 and CH4 [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(3): 78-88. | |
| [25] | Gleizes A, Gonzalez J J, Freton P. Thermal plasma modelling[J]. Journal of Physics D: Applied Physics, 2005, 38(9): R153-R183. |
| [26] | Fincke J R, Anderson R P, Hyde T, et al. Plasma thermal conversion of methane to acetylene[J]. Plasma Chemistry and Plasma Processing, 2002, 22(1): 105-136. |
| [27] | 余徽, 印永祥, 戴晓雁. 等离子体射流裂解甲烷制乙炔的数值模拟[J]. 化工学报, 2006, 57(10): 2319-2326. |
| Yu H, Yin Y X, Dai X Y. Numerical simulation of methane conversion to acetylene in plasma jet reactor[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(10): 2319-2326. | |
| [28] | Hori M. Radical-controlled plasma processes[J]. Reviews of Modern Plasma Physics, 2022, 6(1): 36. |
| [29] | 孙艳朋, 聂勇, 吴昂山, 等. 热等离子体重整甲烷和二氧化碳制合成气的热力学研究[J]. 天然气化工(C1化学与化工), 2010, 35(4): 22-26. |
| Sun Y P, Nie Y, Wu A S, et al. Thermodynamic study on carbon dioxide reforming of methane to syngas by thermal plasma[J]. Natural Gas Chemical Industry, 2010, 35(4): 22-26. | |
| [30] | Giammaria G, van Rooij G, Lefferts L. Plasma catalysis: distinguishing between thermal and chemical effects[J]. Catalysts, 2019, 9(2): 185. |
| [31] | Trelles J P, Chazelas C, Vardelle A, et al. Arc plasma torch modeling[J]. Journal of Thermal Spray Technology, 2009, 18(5): 728-752. |
| [32] | Živný O, Hlína M, Serov A, et al. Abatement of tetrafluormethane using thermal steam plasma[J]. Plasma Chemistry and Plasma Processing, 2020, 40(1): 309-323. |
| [33] | Zhong H T, Shneider M N, Mao X Q, et al. Dynamics and chemical mode analysis of plasma thermal-chemical instability[J]. Plasma Sources Science and Technology, 2021, 30(3): 035002. |
| [34] | Feng J Y, Sun X, Li Z, et al. Plasma-assisted reforming of methane[J]. Advanced Science, 2022, 9(34): 2203221. |
| [35] | Kok D H K, Ibrahim R K R, Toemen S, et al. The catalytic efficiency of Ru/Mn/Ce-Al2O3 in the reduction of HCN in dry methane reforming with CO2 assisted by non-thermal plasma[J]. Journal of Physics: Conference Series, 2023, 2432(1): 012011. |
| [36] | Wang W Z, Snoeckx R, Zhang X M, et al. Modeling plasma-based CO2 and CH4 conversion in mixtures with N2, O2, and H2O: the bigger plasma chemistry picture[J]. The Journal of Physical Chemistry C, 2018, 122(16): 8704-8723. |
| [37] | Snoeckx R, Setareh M, Aerts R, et al. Influence of N2 concentration in a CH4/N2 dielectric barrier discharge used for CH4 conversion into H2 [J]. International Journal of Hydrogen Energy, 2013, 38(36): 16098-16120. |
| [38] | Zhang H, Wang W Z, Li X D, et al. Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma: a chemical kinetics study[J]. Chemical Engineering Journal, 2018, 345: 67-78. |
| [39] | McKean D C. Individual CH bond strengths in simple organic compounds: effects of conformation and substitution[J]. Chemical Society Reviews, 1978, 7(3): 399-422. |
| [1] | Yilei ZHOU, Zhi LI, Xin PENG. Design of self-optimizing control structure for continuous catalytic reforming reaction process based on surrogate model [J]. CIESC Journal, 2025, 76(9): 4499-4511. |
| [2] | Tianhao WU, Tingwei YE, Yan LIN, Zhen HUANG. In-situ hydrogen supplementation of biomass chemical looping gasification to produce syngas with controllable H2/CO [J]. CIESC Journal, 2025, 76(7): 3498-3508. |
| [3] | Qingping ZHAO, Min ZHANG, Hui ZHAO, Gang WANG, Yongfu QIU. Hydrogen bond effect and kinetic studies on hydroesterification of ethylene to methyl propionate [J]. CIESC Journal, 2025, 76(6): 2701-2713. |
| [4] | Zhaoming MAI, Yingtao WU, Wei WANG, Haibao MU, Zuohua HUANG, Chenglong TANG. Study on nonlinear ignition characteristics and dilution gas effect of n-dodecane methane dual fuel [J]. CIESC Journal, 2025, 76(6): 3115-3124. |
| [5] | Haiyan JI, Jiayin LIU, Haijun WU, Jinglin HE, Ziheng JIN, Dianhang WEI, Xia JIANG. Research progress on the application of low-temperature plasma in biomass gasification to produce hydrogen [J]. CIESC Journal, 2025, 76(6): 2419-2433. |
| [6] | Jun WAN, Jiarui SONG, Chunhuang FAN, Lele WEI, Yina NIE, Lin LIU. Highly efficient hole transfer for promoting photocatalytic hydrogen production from alkaline methanol aqueous solution [J]. CIESC Journal, 2025, 76(3): 1064-1075. |
| [7] | Meng YANG, Xiaoqian DING, Tao YU, Chang LIU, Chenglong TANG, Zuohua HUANG. Experimental and kinetic studies for the ignition characteristic of the green propellant of methane/nitrous oxide [J]. CIESC Journal, 2025, 76(3): 1221-1229. |
| [8] | Shan GUO, Yu TIAN, Yongbin XU, Peng WANG, Zhiming LIU. Synthesis of a high-efficacy medium-entropy alloy catalyst via the recycling of spent batteries and its subsequent performance evaluation [J]. CIESC Journal, 2025, 76(1): 231-240. |
| [9] | Meilin SHI, Lianda ZHAO, Xingjian DENG, Jingsong WANG, Haibin ZUO, Qingguo XUE. Research progress on catalytic methane reforming process [J]. CIESC Journal, 2024, 75(S1): 25-39. |
| [10] | Huanjuan ZHAO, Yingxin BAO, Kang YU, Jing LIU, Xinming QIAN. Quantitative experimental study on detonation instability of multi-component [J]. CIESC Journal, 2024, 75(S1): 339-348. |
| [11] | Yin WANG, Pengfei CHU, Hu LIU, Jing LYU, Shouying HUANG, Shengping WANG, Xinbin MA. Influence of aluminum sol with different pH on performance of shaped mordenite catalyst for dimethyl ether carbonylation [J]. CIESC Journal, 2024, 75(7): 2533-2543. |
| [12] | Jin ZHANG, Zhibin GUO, Laiming LUO, Shanfu LU, Yan XIANG. Design and performance of 5 kW reforming methanol high temperature proton exchange membrane fuel cell system [J]. CIESC Journal, 2024, 75(4): 1697-1704. |
| [13] | Xueyun WANG, Xiaobing YU, Wanwang PENG, Yansong SHEN. Numerical study on combustion zone behaviors of a slagging gasifier [J]. CIESC Journal, 2024, 75(2): 659-674. |
| [14] | Zhaoxiang ZHANG, Maokun CAI, Zhiying REN, Xiaohong JIA, Fei GUO. Numerical analysis of the effect of temperature and its fluctuations on the vulcanization process of rubber seals [J]. CIESC Journal, 2024, 75(2): 715-726. |
| [15] | Hongying ZHUO, Zhongzheng ZHAO, Zheng SHEN, Xiaofeng YANG, Yanqiang HUANG. Research progress on the catalytic conversion of ortho- to para-hydrogen [J]. CIESC Journal, 2024, 75(11): 3883-3895. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||