CIESC Journal ›› 2017, Vol. 68 ›› Issue (3): 1239-1246.DOI: 10.11949/j.issn.0438-1157.20160974
Previous Articles Next Articles
XIA Qing, ZHAO Junhao, WANG Kai, LI Sheng, GUO Bing, TIAN Yuan, YANG Zeheng, ZHANG Weixin
Received:
2016-07-11
Revised:
2016-11-02
Online:
2017-03-05
Published:
2017-03-05
Contact:
10.11949/j.issn.0438-1157.20160974
Supported by:
supported by the National Natural Science Foundation of China (91534102,21271058),the Science and Technology Project of Anhui Province (1501021013) and the Intelligent Manufacturing Institute of Hefei University of Technology (IMICZ2015104).
夏青, 赵俊豪, 王凯, 李昇, 郭冰, 田院, 杨则恒, 张卫新
通讯作者:
张卫新,wxzhang@hfut.edu.cn
基金资助:
国家自然科学基金项目(91534102,21271058);安徽省科技攻关项目(1501021013);合肥工业大学智能制造技术研究院项目(IMICZ2015104)。
CLC Number:
XIA Qing, ZHAO Junhao, WANG Kai, LI Sheng, GUO Bing, TIAN Yuan, YANG Zeheng, ZHANG Weixin. Synthesis and characterization of LiNi0.5Co0.2Mn0.3O2 cathode materials by stepwise co-precipitation[J]. CIESC Journal, 2017, 68(3): 1239-1246.
夏青, 赵俊豪, 王凯, 李昇, 郭冰, 田院, 杨则恒, 张卫新. 基于分级共沉淀法制备锂离子电池LiNi0.5Co0.2Mn0.3O2正极材料[J]. 化工学报, 2017, 68(3): 1239-1246.
[1] | ARMAND M, TARASCON J M. Building better batteries[J]. Nat., 2008, 451(7179):652-657. |
[2] | LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angew. Chem. Int. Ed., 2015, 54(15):4440-4457. |
[3] | 田从学, 张昭, 侯隽, 等. 非化学计量比尖晶石型锂离子电池正极材料的合成与表征[J]. 化工学报, 2006, 57(4):937-942. TIAN C X, ZHANG Z, HOU J, et al. Synthesis and characterization of non stoichiometric spinel as anode for rechargeable lithium ion battery[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(4):937-942. |
[4] | MA G, Li S, ZHANG W X, et al. A general and mild approach to controllable preparation of manganese-base micro-and nanostructured bars for high performance lithium-ion batteries[J]. Angew. Chem. Int. Ed., 2016, 128:21-30. |
[5] | LIU Z, YU A, LEE J Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries[J]. J. Power Sources, 1999, s81/s82(9):416-419. |
[6] | JUNG S K, GWON H, HONG J, et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries[J]. Adv. Energy Mater., 2014, 4(1):94-98. |
[7] | HE Y S, MA Z F, LIAO X Z, et al. Synthesis and characterization of submicron-sized LiNi1/3Co1/3Mn1/3O2 by a simple self-propagating solid-state metathesis method[J]. J. Power Sources, 2007, 163(2):1053-1058. |
[8] | LI L J, LI X H, WANG Z X, et al. Synthesis of LiNi0.8Co0.1Mn0.1O2 cathode material by chloride co-precipitation method[J]. Trans. Nonferrous Met. Soc., China, 2010, 20:s279-s282. |
[9] | FU H Q, ZHANG X Y, HUANG H, et al. Conductivity property of polyaniline synthesized by emulsion polymerization[J]. J. Chem. Ind. Eng., 2005, 56(9):1790-1793. |
[10] | LEE M H, KANG Y J, MYUNG S T, et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3] O2 via co-precipitation[J]. Electrochim. Acta, 2004, 50(4):939-948. |
[11] | MANTHIRA A, KNIGHT J C, MYUNG S T, et al. Nickel-rich and lithium-lich layered oxide cathodes:progress and perspectives[J]. Adv. Energy Mater., 2016, 6(1). DOI:10.1002/aenm.201501010. http://onlinelibrary.wiley.com/doi/10.1002/aenm.201501010/full |
[12] | WRIGHT R B, CHRISTOPHERSEN J P, MOTLOCH C G, et al. Power fade and capacity fade resulting from cycle-life testing of advanced technology development program lithium-ion batteries[J]. J. Power Sources, 2003, 119/120/121(3):865-869. |
[13] | WOO S U, PARK B C, YOON C S, et al. Improvement of electrochemical performances of Li[Ni0.8Co0.1Mn0.1] O2 cathode materials by fluorine substitution[J]. J. Electrochem. Soc., 2007, 154(7):A649-A655. |
[14] | SUN Y K, LEE B R, NOH H J, et al. A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10] O2 cathode material for high-energy lithium batteries[J]. J. Mater. Chem., 2011, 21(27):10108-10112. |
[15] | NOH M, CHO J. Optimized synthetic conditions of LiNi0.5Co0.2Mn0.3O2 cathode materials for high rate lithium batteries via co-precipitation method[J]. J. Electrochem. Soc., 2012, 160(1):A105-A111. |
[16] | LI X, QIU K, GAO Y, et al. High potential performance of cerium-doped LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery[J]. J. Mater. Sci., 2015, 50(7):2914-2920. |
[17] | YANG Z H, LU J B, BIAN D C, et al. Stepwise co-precipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries[J]. J. Power Sources, 2014, 272:144-151. |
[18] | OHZUKU T, MAKIMURA Y. Layered lithium insertion material of LiCoNiO2 for lithium-ion batteries[J]. Chem. Lett., 2001, (7):642-643. |
[19] | KIM J M, CHUNG H T. Role of transition metals in layered Li[Ni,Co,Mn]O2 under electrochemical operation[J]. Electrochim. Acta, 2004, 49(21):3573-3580. |
[20] | 王亮, 何雨石, 张晓鸣, 等. 微波共沉淀法制备锂离子电池正极材料LiNi0.8Co0.2O2[J]. 化工学报, 2007, 58(4):1048-1052. WANG L, HE Y S, ZHANG X M, et al. Preparation and electrochemical properties of LiNi0.8Co0.2O2 cathode material by microwave coprecipitation method[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(4):1048-1052. |
[21] | OHZUKU T, UETA A, NAGAYAMA M, et al. Comparative study of LiCoO2, LiNiCoO2 and LiNiO2 for 4 volt secondary lithium cells[J]. Electrochim. Acta, 1993, 38(9):1159-1167. |
[22] | HUANG Z D, LIU X M, OH S W, et al. Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries[J]. J. Mater. Chem., 2011, 21(29):10777-10784. |
[23] | LU J, PENG Q, WANG W Y, et al. Nanoscale coating of LiMO2(M=Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3:toward better rate capabilities for Li-ion batteries[J]. J. Am. Chem. Soc., 2013, 135(5):1649-1652. |
[24] | LIN F, NORDLUND D, LI Y, et al. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries[J]. Nat. Energy, 2016, 1(1). DOI:10.1038/nenergy.2015.4. http://www.nature.com/articles/nenergy20154 |
[25] | SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nat. Mater., 2009, 8(4):320-324. |
[26] | SUN Y K, CHEN Z H, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nat. Mater., 2012, 11(11):942-947. |
[27] | YI T F, FANG Z K, XIE Y, et al. Synthesis of LiNi0.5Mn1.5O4 cathode with excellent fast charge-discharge performance for lithium-ion battery[J]. Electrochim. Acta, 2014, 147(147):250-256. |
[28] | KONAROVA M, TANIGUCHI I. Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries[J]. J. Power Sources, 2010, 195(11):3661-3667. |
[29] | SHAJU K M, RAO G V S, CHOWDARI B V R. Influence of Li-ion kinetics in the cathodic performance of layered Li(Ni1/3Co1/3Mn1/3)O2[J]. J. Electrochem. Soc., 2003, 151(9):A1324-A1332. |
[30] | LI J, CAO C, XU X, et al. LiNi1/3Co1/3Mn1/3O2 hollow nano-micro hierarchical microspheres with enhanced performances as cathodes for lithium-ion batteries[J]. J. Mater. Chem. A, 2013, 1(38):11848-11852. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[7] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[8] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[9] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[10] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[11] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[12] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[13] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[14] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[15] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 717
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 511
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||