CIESC Journal ›› 2020, Vol. 71 ›› Issue (3): 1390-1397.DOI: 10.11949/0438-1157.20191448
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Jing LI(),Gang DU,Juanjuan YIN(
)
Received:
2019-11-28
Revised:
2020-01-06
Online:
2020-03-05
Published:
2020-03-05
Contact:
Juanjuan YIN
通讯作者:
殷娟娟
作者简介:
李敬(1984—),男,博士,高级工程师,CLC Number:
Jing LI, Gang DU, Juanjuan YIN. Preparation and electrochemical properties of ZnxCo1-xCO3 carbonateanode materials[J]. CIESC Journal, 2020, 71(3): 1390-1397.
李敬, 杜刚, 殷娟娟. ZnxCo1-xCO3碳酸盐负极材料的制备及其电化学性能研究[J]. 化工学报, 2020, 71(3): 1390-1397.
理论掺杂样品 | 实际掺杂样品 |
---|---|
Zn0.33Co0.67CO3 | Zn0.12Co0.88CO3 |
Zn0.5Co0.5CO3 | Zn0.3Co0.7CO3 |
Zn0.67Co0.33CO3 | Zn0.5Co0.5CO3 |
Table 1 Theoretical doping and actual doping of ZnxCo1-xCO3
理论掺杂样品 | 实际掺杂样品 |
---|---|
Zn0.33Co0.67CO3 | Zn0.12Co0.88CO3 |
Zn0.5Co0.5CO3 | Zn0.3Co0.7CO3 |
Zn0.67Co0.33CO3 | Zn0.5Co0.5CO3 |
样品 | 振实密度/(g·cm-3) |
---|---|
CoCO3 | 1.96 |
Zn0.12Co0.88CO3 | 2.11 |
Zn0.3Co0.7CO3 | 2.2 |
Zn0.5Co0.5CO3 | 2.25 |
Table 2 High tap density of ZnxCo1-xCO3 (x=0,0.12,0.3,0.5)
样品 | 振实密度/(g·cm-3) |
---|---|
CoCO3 | 1.96 |
Zn0.12Co0.88CO3 | 2.11 |
Zn0.3Co0.7CO3 | 2.2 |
Zn0.5Co0.5CO3 | 2.25 |
样品 | 0.2 C | 0.5 C | 1 C | 2 C | 0.1 C |
---|---|---|---|---|---|
CoCO3 | 1146.7 | 787.7 | 479.4 | 227.8 | 921 |
Zn0.12Co0.88CO3 | 767.8 | 580.9 | 546.1 | 353.4 | 769 |
Zn0.3Co0.7CO3 | 1048.3 | 809.8 | 657.1 | 407.3 | 935.6 |
Zn0.5Co0.5CO3 | 668.5 | 520.3 | 440.2 | 331.2 | 685.2 |
Table 3 Capacity of ZnxCo1-xCO3 (x=0,0.12,0.3,0.5) [Fig.7(b)] at different ratios/(mA·h·g-1)
样品 | 0.2 C | 0.5 C | 1 C | 2 C | 0.1 C |
---|---|---|---|---|---|
CoCO3 | 1146.7 | 787.7 | 479.4 | 227.8 | 921 |
Zn0.12Co0.88CO3 | 767.8 | 580.9 | 546.1 | 353.4 | 769 |
Zn0.3Co0.7CO3 | 1048.3 | 809.8 | 657.1 | 407.3 | 935.6 |
Zn0.5Co0.5CO3 | 668.5 | 520.3 | 440.2 | 331.2 | 685.2 |
样品 | 循环次数 | Rs/Ω | RSEI/Ω | Rct/Ω |
---|---|---|---|---|
CoCO3 | 2 | 14.6 | 87.97 | 286.7 |
Zn0.12Co0.88CO3 | 2 | 3.76 | 17.93 | 138.6 |
Zn0.3Co0.7CO3 | 2 | 12.8 | 16.5 | 20.3 |
Zn0.5Co0.5CO3 | 2 | 6.63 | 63.8 | 82.6 |
CoCO3 | 102 | 4.124 | 150.2 | 223.7 |
Zn0.12Co0.88CO3 | 102 | 14.7 | 281.4 | 406.1 |
Zn0.3Co0.7CO3 | 102 | 7.65 | 103.6 | 137.9 |
Zn0.5Co0.5CO3 | 102 | 1.35 | 137.8 | 162.4 |
Table 4 Fitting results of EIS curve in Fig.9
样品 | 循环次数 | Rs/Ω | RSEI/Ω | Rct/Ω |
---|---|---|---|---|
CoCO3 | 2 | 14.6 | 87.97 | 286.7 |
Zn0.12Co0.88CO3 | 2 | 3.76 | 17.93 | 138.6 |
Zn0.3Co0.7CO3 | 2 | 12.8 | 16.5 | 20.3 |
Zn0.5Co0.5CO3 | 2 | 6.63 | 63.8 | 82.6 |
CoCO3 | 102 | 4.124 | 150.2 | 223.7 |
Zn0.12Co0.88CO3 | 102 | 14.7 | 281.4 | 406.1 |
Zn0.3Co0.7CO3 | 102 | 7.65 | 103.6 | 137.9 |
Zn0.5Co0.5CO3 | 102 | 1.35 | 137.8 | 162.4 |
1 | Yin J, Ding Z, Lei D, et al. Zn-substituted CoCO3 embedded in carbon nanotubes network as high performance anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 712: 605-612. |
2 | Wang L, Tang W, Jing Y, et al. Do transition metal carbonates have greater lithium storage capability than oxides? A case study of monodisperse CoCO3 and CoO microspindles[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12346-12352. |
3 | Ding Z, Yao B, Feng J, et al. Enhanced rate performance and cycling stability of a CoCO3–polypyrrole composite for lithium ion battery anodes[J]. Journal of Materials Chemistry A, 2013, 1(37): 11200-11209 |
4 | Mirhashemihaghighi S, León B, Pérez V C, et al. Lithium storage mechanisms and effect of partial cobalt substitution in manganese carbonate electrodes[J]. Inorganic Chemistry, 2012, 51(10): 5554-5560. |
5 | Giri A K, Pal P, Ananthakumar R, et al. 3D hierarchically assembled porous wrinkled-paper-like structure of ZnCo2O4 and Co-ZnO@C as anode materials for lithium-ion batteries [J].Crystal Growth & Design, 2014, 14(7): 3352-3359. |
6 | Liang K, Cheang T Y, Wen T, et al. Facile preparation of porous Mn2SnO4/Sn/C composite cubes as high performance anode material for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2016, 120(7): 3669-3676 |
7 | Qin Z, Hong B, Duan B, et al. Tributyl borate as a novel electrolyte additive to improve high voltage stability of lithium cobalt oxide in carbonate-based electrolyte[J]. Electrochimica Acta, 2018, 276: 412-416. |
8 | Tarascon J, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414: 359-367. |
9 | Ishikawa M, Tanaka H, Kawai T. Preparation of highly conductive Mn-doped Fe3O4 thin films with spin polarization at room temperature using a pulsed-laser deposition technique[J]. Applied Physics Letters, 2005, 86(22): 222504. |
10 | Courtel M F, Duncan H, Abu-Lebdeh Y, et al. High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A= Co, Ni, and Zn) [J]. J. Mater. Chem., 2011, 21: 10206-10218. |
11 | Liu B, Zhang J, Wang X, et al. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries[J]. Nano Letters, 2012, 12(6): 3005-3011 |
12 | Wang H, Zhu Y, Yuan C, et al. Cobalt-phthalocyanine-derived ultrafine Co3O4 nanoparticles as high-performance anode materials for lithium ion batteries[J]. Applied Surface Science, 2017, 414: 398-404. |
13 | Jin R, Ma Y, Sun Y, et al. Manganese cobalt oxide (MnCo2O4) hollow spheres as high capacity anode materials for lithium‐ion batteries[J]. Energy Technology, 2017, 5(2): 293-299. |
14 | Sharma Y, Sharma N, Subba R G V, et al. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries[J]. Advanced Functional Materials, 2007, 17(15): 2855-2861. |
15 | Lee C W, Seo S D, Kim D W, et al. Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes[J]. Nano Research, 2013, 6(5): 348-355. |
16 | Sharma Y, Sharma N, Rao G V S, et al. Nano-phase (Cd1/3Zn1/3Co1/3) CO3: a high capacity anode material for Li-ion batteries//meeting abstracts [J].The Electrochemical Society, 2008 (4): 421-421. |
17 | Liu L, Mou L, Yu J, et al. Urchin-like CoO–C micro/nano hierarchical structures as high performance anode materials for Li-ion batteries[J]. RSC Advances, 2017, 7(5): 2637-2643. |
18 | Han X, Han X, Zhan W, et al. Preparation of 3D hierarchical porous Co3O4 nanostructures with enhanced performance in lithium-ion batteries[J]. RSC advances, 2018, 8(6): 3218-3224. |
19 | Huang G, Zhang F, Du X, et al. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries[J]. ACS Nano, 2015, 9(2): 1592-1599. |
20 | Zhang R, Zhang F, Feng J, et al. Green and facile synthesis of porous ZnCO3 as a novel anode material for advanced lithium-ion batteries[J]. Materials Letters, 2014, 118: 5-7. |
21 | Li T, Chen Z X, Cao Y L, et al. Transition-metal chlorides as conversion cathode materials for Li-ion batteries[J]. Electrochimica Acta, 2012, 68: 202-205. |
22 | Şahan H, Göktepe H, Yıldız S, et al. A novel and green synthesis of mixed phase CoO@ Co3O4@ C anode material for lithium ion batteries[J]. Ionics, 2019, 25(2): 447-455. |
23 | Zhao S, Wang Y, Liu R, et al. Full-molar-ratio synthesis and enhanced lithium storage properties of CoxFe1- xCO3 composites with an integrated lattice structure and an atomic-scale synergistic effect[J]. Journal of Materials Chemistry A, 2015, 3(33): 17181-17189. |
24 | Arkhangel'skaya Z P, Ivanova R P, Kas' yan T B, et al. Effect of electrolyte composition on the performance of electrodes in nickel-zinc batteries[J]. Russian Journal of Applied Chemistry, 2001, 74(9): 1479-1484. |
25 | 白晓波, 赵东江, 马松艳. 利用废旧锌锰电池制取盐和氧化锌的研究[J]. 应用化工, 2007, 36(8): 839-841. |
Bai X B, Zhao D J, Ma S Y. Study on producing zinc salts and zinc oxide using the wasted Zn-Mn battery[J]. Applied Chemical Industry, 2007, 36(8): 839-841. | |
26 | Liu Q, Su X, Lei D, et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping[J]. Nature Energy, 2018, 3(11): 936. |
27 | Yang Y, Huang G Y, Sun H, et al. Preparation and electrochemical properties of mesoporous NiCo2O4 double-hemisphere used as anode for lithium-ion battery[J]. Journal of Colloid and Interface Science, 2018, 529: 357-365. |
28 | Shi S, Zhang M, Deng T, et al. A facile strategy to construct binder-free flexible carbonate composite anode at low temperature with high performances for lithium-ion batteries[J]. Electrochimica Acta, 2017, 246: 1004-1015. |
29 | Zhang C, Xu D, Chen W, et al. Cockscomb-like Mn-doped MnxFe1- xCO3 as anode materials for a high-performance lithium-ion battery[J]. Journal of Applied Electrochemistry, 2017, 47(2): 157-166. |
30 | Zhang F, Zhang R, Liang G, et al. Carboxylated carbon nanotube anchored MnCO3 nanocomposites as anode materials for advanced lithium-ion batteries[J]. Materials Letters, 2013, 111:165-168. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[6] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[7] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[8] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[9] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[10] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[11] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[14] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[15] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||