CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1844-1850.DOI: 10.11949/0438-1157.20190967
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Jie WANG1,2(),Yuan LI1,Hailei ZHAO1,2(
)
Received:
2019-08-30
Revised:
2020-01-06
Online:
2020-04-05
Published:
2020-04-05
Contact:
Hailei ZHAO
通讯作者:
赵海雷
作者简介:
王捷(1987—),男,博士,讲师,基金资助:
CLC Number:
Jie WANG, Yuan LI, Hailei ZHAO. Synthesis and lithium storage performance of three-dimensional Co3O4 micro-flowers assembled with nanoparticles[J]. CIESC Journal, 2020, 71(4): 1844-1850.
王捷, 李圆, 赵海雷. 纳米颗粒组装三维Co3O4微米花材料制备及储锂性能研究[J]. 化工学报, 2020, 71(4): 1844-1850.
1 | Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367. |
2 | Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3): 587-603. |
3 | Scrosati B, Garche J. Lithium batteries: status, prospects and future[J]. J. Power Sources, 2010, 195(9): 2419-2430. |
4 | Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future[J]. Energy Environ. Sci., 2011, 4(9): 3287-3295. |
5 | Zhang S S, Xu K, Jow T R. Study of the charging process of a LiCoO2-based Li-ion battery[J]. J. Power Sources, 2006, 160(2): 1349-1354. |
6 | Candelaria S L, Shao Y, Zhou W, et al. Nanostructured carbon for energy storage and conversion[J]. Nano Energy, 2012, 1(2): 195-220. |
7 | Persson K, Sethuraman V A, Hardwick L J, et al. Lithium diffusion in graphitic carbon[J]. J. Phys. Chem. Lett., 2010, 1(8): 1176-1180. |
8 | Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material[J]. Science, 1997, 276(5317): 1395-1397. |
9 | Zhang W M, Hu J S, Guo Y G, et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries[J]. Adv. Mater., 2008, 20(6): 1160-1165. |
10 | Kasavajjula U, Wang C S, Appleby A J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. J. Power Sources, 2007, 163(2): 1003-1039. |
11 | Hu Y S, Demir-Cakan R, Titirici M M, et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries[J]. Angew. Chem. Int. Ed., 2008, 47(9): 1645-1649. |
12 | Wu Z S, Ren W C, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano, 2010, 4(6): 3187-3194. |
13 | Zhou G, Wang D W, Li F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries[J]. Chem. Mater., 2010, 22(18): 5306-5313. |
14 | Wang H, Cui L F, Yang Y, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries[J]. J. Am. Chem. Soc., 2010, 132(40): 13978-13980. |
15 | Zhong M, He W W, Shuang W, et al. Metal-organic framework derived core-shell Co/Co3O4@N-C nanocomposites as high performance anode materials for lithium ion batteries[J]. Inorg. Chem., 2018, 57(8): 4620-4628. |
16 | Chen Y, Wang Y, Wang Z, et al. Densification by compaction as an effective low-cost method to attain a high areal lithium storage capacity in a CNT@Co3O4 sponge[J]. Adv. Energy Mater., 2018, 8(19): 1702981. |
17 | Huang G, Zhang F, Du X, et al. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries[J]. ACS Nano, 2015, 9(2): 1592-1599. |
18 | Chen Y M, Yu L, Lou X W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage[J]. Angew. Chem. Int. Ed., 2016, 55(20): 5990-5993. |
19 | Li Y, Tan B, Wu Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability[J]. Nano Lett., 2008, 8(1): 265-270. |
20 | Yan N, Hu L, Li Y, et al. Co3O4 nanocages for high-performance anode material in lithium ion batteries[J]. J. Phys. Chem. C, 2012, 116(12): 7227-7235. |
21 | Yan C, Chen G, Zhou X, et al. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries[J]. Adv. Funct. Mater., 2016, 26(9): 1428-1436. |
22 | Wu Z S, Ren W, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano, 2010, 4(6): 3187-3194. |
23 | Dou Y, Xu J, Ruan B, et al. Atomic layer-by-layer Co3O4/graphene composite for high performance lithium-ion batteries[J]. Adv. Energy Mater., 2016, 6(8): 1501835. |
24 | Wang B, Lu X Y, Tang Y. Synthesis of snowflake-shaped Co3O4 with a high aspect ratio as a high capacity anode material for lithium ion batteries[J]. J. Mater. Chem. A, 2015, 3(18): 9689-9699. |
25 | Maier J. Thermodynamics of electrochemical lithium storage[J]. Angew. Chem. Int. Ed., 2013, 52(19): 4998-5026. |
26 | Liu R, Zhao S, Zhang M, et al. High interfacial lithium storage capability of hollow porous Mn2O3 nanostructures obtained from carbonate precursors[J]. Chem. Commun., 2015, 51(26): 5728-5731. |
27 | Kang W, Tang Y, Li W, et al. High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode[J]. Nanoscale, 2015, 7(1): 225-231. |
28 | Shin J Y, Samuelis D, Maier J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena[J]. Adv. Funct. Mater., 2011, 21(18): 3464-3472. |
29 | Do J S, Weng C H. Preparation and characterization of CoO used as anodic material of lithium battery[J]. J. Power Sources, 2005, 146(1/2): 482-486. |
30 | Laruelle S, Grugeon S, Poizot P, et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential[J]. J. Electrochem. Soc., 2002, 149(5): A627-A634. |
31 | Zeng Z, Zhao H, Lyu P, et al. Electrochemical properties of iron oxides/carbon nanotubes as anode material for lithium ion batteries[J]. J. Power Sources, 2015, 274: 1091-1099. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[3] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[6] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[7] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[8] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[11] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[12] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[13] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[14] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[15] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 147
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 494
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||